This memoir initiates a model theory-based study of the numerical radius norm. Guided by the abstract model theory of Jim Agler, the authors propose a decomposition for operators that is particularly useful in understanding their properties with respect to the numerical radius norm. Of the topics amenable to investigation with these tools, the following are presented: a complete description of the linear extreme points of the $n\times n$ matrix (numerical radius) unit ball; several equivalent characterizations of matricial extremals in the unit ball; that is, those members which do not allow a nontrivial extension remaining in the unit ball; and, applications to numerical ranges of matrices, including a complete parameterization of all matrices whose numerical ranges are closed disks.In addition, an explicit construction for unitary 2-dilations of unit ball members is given, Ando's characterization of the unit ball is further developed, and a study of operators satisfying $ A - \textnormal {Re} (e^{i\theta}A)\geq 0$ for all $\theta$ is initiated.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : ThriftBooks-Atlanta, AUSTELL, GA, Etats-Unis
Hardcover. Etat : Good. No Jacket. Former library book; Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less. N° de réf. du vendeur G0821806513I3N10
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16110 9780821806517 Sprache: Englisch Gewicht in Gramm: 550. N° de réf. du vendeur 2479572
Quantité disponible : 1 disponible(s)