Maximum Entropy of Cycles of Even Period - Couverture souple

King, Deborah M.; Strantzen, J. B.

 
9780821827079: Maximum Entropy of Cycles of Even Period

Synopsis

A finite fully invariant set of a continuous map of the interval induces a permutation of that invariant set. If the permutation is a cycle, it is called its orbit type. It is known that Misiurewicz-Nitecki orbit types of period $n$ congruent to $1 \pmod 4$ and their generalizations to orbit types of period $n$ congruent to $3 \pmod 4$ have maximum entropy amongst all orbit types of odd period $n$ and indeed amongst all $n$-permutations for $n$ odd. We construct a family of orbit types of period $n$ congruent to $0\pmod 4$ which attain maximum entropy amongst $n$-cycles.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.