Articles liés à Abstract Band Method Via Factorization, Positive and...

Abstract Band Method Via Factorization, Positive and Band Extensions of Multivariable Almost Periodic Matrix Functions, and Spectral Estimation - Couverture souple

 
9780821829967: Abstract Band Method Via Factorization, Positive and Band Extensions of Multivariable Almost Periodic Matrix Functions, and Spectral Estimation

Synopsis

New versions are developed of an abstract scheme, which are designed to provide a framework for solving a variety of extension problems. The abstract scheme is commonly known as the band method. The main feature of the new versions is that they express directly the conditions for existence of positive band extensions in terms of abstract factorizations (with certain additional properties). The results allow us to prove, among other things, that the band extension is continuous in an appropriate sense. Using the new versions of the abstract band method, we solve the positive extension problem for almost periodic matrix functions of several real variables with Fourier coefficients indexed in a given additive subgroup of the space of variables.This generality allows us to treat simultaneously many particular cases, for example the case of functions periodic in some variables and almost periodic in others. Necessary and sufficient conditions are given for the existence of positive extensions in terms of Toeplitz operators on Besikovitch spaces. Furthermore, when a solution exists a special extension (the band extension) is constructed which enjoys a maximum entropy property.A linear fractional parameterization of the set of all extensions is also provided. We interpret the obtained results (in the periodic case) in terms of existence of a multivariate autoregressive moving averages (ARMA) process with given autocorrelation coefficients, and identify its maximal prediction error. Another application concerns the solution of the positive extension problem in the context of Wiener algebra of infinite operator matrices. It includes the identification of the maximum entropy extension and a description of all positive extensions via a linear fractional formula. In the periodic case it solves a linear estimation problem for cyclostationary stochastic processes.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

Ex-library in GOOD condition with...
Afficher cet article
EUR 19,90

Autre devise

EUR 7 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Abstract Band Method Via Factorization, Positive and...

Image fournie par le vendeur

Rodman, Leiba; Spitkovskii, Ilya M.; Woerdeman, Hugo J.
ISBN 10 : 0821829963 ISBN 13 : 9780821829967
Ancien ou d'occasion Softcover

Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Softcover. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-00539 9780821829967 Sprache: Englisch Gewicht in Gramm: 350. N° de réf. du vendeur 2483057

Contacter le vendeur

Acheter D'occasion

EUR 19,90
Autre devise
Frais de port : EUR 7
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier