In this monograph, we study the cohomology of degeneracy loci of the following type. Let $X$ be a complex projective manifold of dimension $n$, let $E$ and $F$ be holomorphic vector bundles on $X$ of rank $e$ and $f$, respectively, and let $\psi\colon F\to E$ be a holomorphic homomorphism of vector bundles. Consider the degeneracy locus $Z:=D_r(\psi):=\{x\in X\colon \mathrm{rk} (\psi(x))\le r\}$. We assume without loss of generality that $e\ge f>r\ge 0$. We assume furthermore that $E\otimes F^\vee$ is ample and globally generated, and that $\psi$ is a general homomorphism. Then $Z$ has dimension $d:=n-(e-r)(f-r)$. In order to study the cohomology of $Z$, we consider the Grassmannian bundle $\pi\colon Y:=\mathbb{G}(f-r,F)\to X$ of $(f-r)$-dimensional linear subspaces of the fibres of $F$.In $Y$, one has an analogue $W$ of $Z$: $W$ is smooth and of dimension $d$, the projection $\pi$ maps $W$ onto $Z$ and $W\stackrel{\sim} {\to} Z$ if $n<(e-r+1)(f-r+1)$. (If $r=0$ then $W=Z\subseteq X=Y$ is the zero-locus of $\psi\in H^0(X,E\otimes F^\vee)$.) Fulton and Lazarsfeld proved that $H^q(Y;\mathbb{Z}) \to H^q(W;\mathbb{Z})$ is an isomorphism for $q\lt d$ and is injective with torsion-free cokernel for $q=d$. This generalizes the Lefschetz hyperplane theorem. We generalize the Noether-Lefschetz theorem, i.e. we show that the Hodge classes in $H^d(W)$ are contained in the subspace $H^d(Y)\subseteq H^d(W)$ provided that $E\otimes F^\vee$ is sufficiently ample and $\psi$ is very general.The positivity condition on $E\otimes F^\vee$ can be made explicit in various special cases. For example, if $r=0$ or $r=f-1$ we show that Noether-Lefschetz holds as soon as the Hodge numbers of $W$ allow, just as in the classical case of surfaces in $\mathbb{P}^3$. If $X=\mathbb{P}^n$ we give sufficient positivity conditions in terms of Castelnuovo-Mumford regularity of $E\otimes F^\vee$. The examples in the last chapter show that these conditions are quite sharp.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 14 SPA 9780821831830 Sprache: Englisch Gewicht in Gramm: 550. N° de réf. du vendeur 2499325
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 14 SPA 9780821831830 Sprache: Englisch Gewicht in Gramm: 550. N° de réf. du vendeur 2507767
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-00552 9780821831830 Sprache: Englisch Gewicht in Gramm: 350. N° de réf. du vendeur 2483070
Quantité disponible : 1 disponible(s)