This is the second part of a series of papers called ""HAG"", devoted to developing the foundations of homotopical algebraic geometry. The authors start by defining and studying generalizations of standard notions of linear algebra in an abstract monoidal model category, such as derivations, etale and smooth morphisms, flat and projective modules, etc. They then use their theory of stacks over model categories to define a general notion of geometric stack over a base symmetric monoidal model category $C$, and prove that this notion satisfies the expected properties.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Zubal-Books, Since 1961, Cleveland, OH, Etats-Unis
Etat : Fine. 224 pp., paperback, fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. N° de réf. du vendeur ZB1334146
Quantité disponible : 1 disponible(s)