L'édition de cet ISBN n'est malheureusement plus disponible.
This book is designed as a text for the first year of graduate algebra, but it can also serve as a reference since it contains more advanced topics as well. This second edition has a different organization than the first. It begins with a discussion of the cubic and quartic equations, which leads into permutations, group theory, and Galois theory (for finite extensions; infinite Galois theory is discussed later in the book). The study of groups continues with finite abelian groups (finitely generated groups are discussed later, in the context of module theory), Sylow theorems, simplicity of projective unimodular groups, free groups and presentations, and the Nielsen-Schreier theorem (subgroups of free groups are free). The study of commutative rings continues with prime and maximal ideals, unique factorization, noetherian rings, Zorn's lemma and applications, varieties, and Grobner bases. Next, noncommutative rings and modules are discussed, treating tensor product, projective, injective, and flat modules, categories, functors, and natural transformations, categorical constructions (including direct and inverse limits), and adjoint functors. Then follow group representations: Wedderburn-Artin theorems, character theory, theorems of Burnside and Frobenius, division rings, Brauer groups, and abelian categories. Advanced linear algebra treats canonical forms for matrices and the structure of modules over PIDs, followed by multilinear algebra. Homology is introduced, first for simplicial complexes, then as derived functors, with applications to Ext, Tor, and cohomology of groups, crossed products, and an introduction to algebraic $K$-theory. Finally, the author treats localization, Dedekind rings and algebraic number theory, and homological dimensions. The book ends with the proof that regular local rings have unique factorization. (GSM/114)
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
For two-semester, beginning graduate-level courses in Algebra.
The new "Bibles of Graduate Algebra." This text's organizing principle is the interplay between groups and rings, where “rings” includes the ideas of modules. It contains basic definitions, complete and clear proofs, and gives attention to the topics of algebraic geometry, Gröbner bases, homology, and representations. More than merely a succession of definition-theorem-proofs, this text puts results and ideas in context so that students can appreciate why a certain topic is being studied, and where definitions originate.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
(Aucun exemplaire disponible)
Chercher: Créez une demandeVous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !
Créez une demande