Motivated by applications to control theory and to the theory of partial differential equations (PDE's), the authors examine the exponential stability and analyticity of C0-semigroups associated with various dissipative systems. They present a unique, systematic approach in which they prove exponential stability by combining a theory from semigroup theory with partial differential equation techniques, and use an analogous theorem with PDE techniques to prove analyticity. The result is a powerful but simple tool useful in determining whether these properties will preserve for a given dissipative system.
The authors show that the exponential stability is preserved for all the mechanical systems considered in this book-linear, one-dimensional thermoelastic, viscoelastic and thermoviscoelastic systems, plus systems with shear or friction damping. However, readers also learn that this property does not hold true for linear three-dimensional systems without making assumptions on the domain and initial data, and that analyticity is a more sensitive property, not preserved even for some of the systems addressed in this study.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Motivated by applications to control theory and to the theory of partial differential equations (PDE's), the authors examine the exponential stability and analyticity of C0-semigroups associated with various dissipative systems. They present a unique, systematic approach in which they prove exponential stability by combining a theory from semigroup theory with partial differential equation techniques, and use an analogous theorem with PDE techniques to prove analyticity. The result is a powerful but simple tool useful in determining whether these properties will preserve for a given dissipative system.
The authors show that the exponential stability is preserved for all the mechanical systems considered in this book-linear, one-dimensional thermoelastic, viscoelastic and thermoviscoelastic systems, plus systems with shear or friction damping. However, readers also learn that this property does not hold true for linear three-dimensional systems without making assumptions on the domain and initial data, and that analyticity is a more sensitive property, not preserved even for some of the systems addressed in this study.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Gratuit expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Seiten: 224 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 2258652/2
Quantité disponible : 2 disponible(s)
Vendeur : Anybook.com, Lincoln, Royaume-Uni
Etat : Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,550grams, ISBN:0849306159. N° de réf. du vendeur 5838149
Quantité disponible : 1 disponible(s)