Machine Learning for Spatial Environmental Data: Theory, Applications and Software - Couverture rigide

Kanevski, Mikhail; Timonin, Vadim; Pozdnukhov, Alexi

 
9780849382376: Machine Learning for Spatial Environmental Data: Theory, Applications and Software

L'édition de cet ISBN n'est malheureusement plus disponible.

Synopsis

The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

This book discusses machine learning algorithms, such as artificial neural networks of different architectures, statistical learning theory, and Support Vector Machines used for the classification and mapping of spatially distributed data.  It presents basic geostatistical algorithms as well. The authors describe new trends in machine learning and their application to spatial data. The text also includes real case studies based on environmental and pollution data. It includes a CD-ROM with software that will allow both students and researchers to put the concepts to practice.  

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9782940222247: Machine Learning for Spatial Environmental Data: Theory, Applications and Software

Edition présentée

ISBN 10 :  294022224X ISBN 13 :  9782940222247
Editeur : Presses Polytechniques et Univer..., 2026
Couverture souple