Support Vector Machines for Classification Problems.- Method of Maximum Margin.-Dual Problem.-Soft Margin.- C- Support Vector Classification.-C- Support Vector Classification with Nominal Attributes.-LOO Bounds for Support Vector Machines.-Introduction .-LOO bounds for ε-Support Vector Regression.- LOO Bounds for Support Vector Ordinal Regression Machine .- Support Vector Machines for Multi-Class Classification Problems.-K-class Linear Programming Support Vector Classification Regression Machine (KLPSVCR).-Support Vector Ordinal Regression Machine for Multi-class Problems.- Unsupervised and Semi-Supervised Support Vector Machines.-Unsupervised and Semi-Supervised ν-Support Vector Machine.-Numerical Experiments.-Unsupervised and Semi-supervised Lagrange Support Vector Machine.-Unconstrained Transductive Support Vector Machine.-Robust Support Vector Machines.-Support Vector Ordinal Regression Machine.- Robust Multi-class Algorithm.- Robust Unsupervised and Semi-Supervised Bounded C-Support Vector Machine.-Feature Selection via lp-norm Support Vector Machines.-lp-norm Support Vector Classification.-lp-norm Proximal Support Vector Machine.-Multiple Criteria Linear Programming.-Comparison of Support Vector Machine and Multiple Criteria Programming.-Multiple Criteria Linear Programming.-Multiple Criteria Linear Programming for Multiple Classes.- Penalized Multiple Criteria Linear Programming.-Regularized Multiple Criteria Linear Programs for Classification.-MCLP Extensions.-Fuzzy MCLP.-FMCLP with Soft Constraints.-FMCLP by Tolerances.-Kernel Based MCLP.- Knowledge Based MCLP.- Rough set based MCLP.- Regression by MCLP.-Multiple Criteria Quadratic Programming.-A General Multiple Mathematical Programming.-Multi-Criteria Convex Quadratic Programming Model Kernel based MCQP.- Non-additiveMCLP.-Non-additive Measures and Integrals.-Non-additive Classification Models.-Non-additive MCP.- Reducing the Time Complexity.-Hierarchical Choquet Integral.-Choquet Integral with Respect to K-additive Measure.-MC2LP.-MC2LP Classification.-Minimal Error and Maximal Between-class Variance Model.-Firm Financial Analysis.-Finance and Banking.-General Classification Process.-Firm Bankruptcy Prediction.- Personal Credit Management.- Credit Card Accounts Classification.-Two-class Analysis.-FMCLP Analysis.-Three-class Analysis.-Four-class Analysis.-Empirical Study and Managerial Significance of Four-class Models.- Health Insurance Fraud Detection.- Problem Identification.-A Real-life Data Mining Study.- Network Intrusion Detection.-Problem and Two Datasets.-Classify NeWT Lab Data by MCMP, MCMP with Kernel and See5.-Classify KDDCUP-Data by Nine Different Methods.- Internet Service Analysis.-VIP Mail Dataset.- Empirical Study of Cross-validation.-Comparison of Multiple-Criteria Programming Models and SVM.-HIV-1 Informatics.-HIV-1 Mediated Neuronal Dendritic and Synaptic Damage.-Materials and Methods.-Designs of Classifications.- Analytic Results.- Anti-gen and Anti-body Informatics .-Problem Background.- MCQP, LDA and DT Analyses.-Kernel-based MCQP and SVM Analyses.-Geol-chemical Analyses.-Problem Description.- Multiple-class Analyses.-More Advanced Analyses.-Intelligent Knowledge Management.-Purposes of the Study.- Definitions and Theoretical Framework of Intelligent Knowledge.-Some Research Directions
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 3,90 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut - Neubindung, Buchschnitt leicht verkürzt, Buchrücken leicht angestoßen, Ausg. 2011 | Seiten: 332 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 10325360/12
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces MCLP for data mining intuitively, systemically and comprehensivelyOffers classification problems and regression problems which are the two main components of data miningConstructs SVM s for solving multi-class classification prob. N° de réf. du vendeur 5979330
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery.Most of the material in this book is directly from the research and application activities that the authors' research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems. 332 pp. Englisch. N° de réf. du vendeur 9780857295033
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining.Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery.Most of the material in this book is directly from the research and application activities that the authors¿ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 332 pp. Englisch. N° de réf. du vendeur 9780857295033
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery.Most of the material in this book is directly from the research and application activities that the authors' research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems. N° de réf. du vendeur 9780857295033
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 334. N° de réf. du vendeur 262564466
Quantité disponible : 4 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 331 pages. 9.00x6.00x1.00 inches. In Stock. N° de réf. du vendeur x-0857295039
Quantité disponible : 2 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2317530013182
Quantité disponible : Plus de 20 disponibles
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 334. N° de réf. du vendeur 182564472
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 334 Illus. N° de réf. du vendeur 5283501
Quantité disponible : 4 disponible(s)