Neuro-Fuzzy Control of Industrial Systems with Actuator Nonlinearities - Couverture rigide

Lewis, F. L.; Campos, J.; Selmic, R.

 
9780898715057: Neuro-Fuzzy Control of Industrial Systems with Actuator Nonlinearities

Synopsis

Neural networks and fuzzy systems are model free control design approaches that represent an advantage over classical control when dealing with complicated nonlinear actuator dynamics. Neuro-Fuzzy Control of Industrial Systems with Actuator Nonlinearities brings neural networks and fuzzy logic together with dynamical control systems. Each chapter presents powerful control approaches for the design of intelligent controllers to compensate for actuator nonlinearities such as time delay, friction, deadzone, and backlash that can be found in all industrial motion systems, plus a thorough development, rigorous stability proofs, and simulation examples for each design. In the final chapter, the authors develop a framework to implement intelligent control schemes on actual systems. Rigorous stability proofs are further verified by computer simulations, and appendices contain the computer code needed to build intelligent controllers for real-time applications.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

Neural networks and fuzzy systems are model free control design approaches that represent an advantage over classical control when dealing with complicated nonlinear actuator dynamics. Neuro-Fuzzy Control of Industrial Systems with Actuator Nonlinearities brings neural networks and fuzzy logic together with dynamical control systems. Each chapter presents powerful control approaches for the design of intelligent controllers to compensate for actuator nonlinearities such as time delay, friction, deadzone, and backlash that can be found in all industrial motion systems, plus a thorough development, rigorous stability proofs, and simulation examples for each design. In the final chapter, the authors develop a framework to implement intelligent control schemes on actual systems. Rigorous stability proofs are further verified by computer simulations, and appendices contain the computer code needed to build intelligent controllers for real-time applications.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.