null
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Basic Helicopter Aerodynamics is widely appreciated as an easily accessible, rounded introduction to the first principles of the aerodynamics of helicopter flight. Simon Newman has brought this third edition completely up to date with a full new set of illustrations and imagery. An accompanying website www.wiley.com/go/seddon contains all the calculation files used in the book, problems, solutions, PPT slides and supporting MATLAB® code.
Simon Newman addresses the unique considerations applicable to rotor UAVs and MAVs, and coverage of blade dynamics is expanded to include both flapping, lagging and ground resonance. New material is included on blade tip design, flow characteristics surrounding the rotor in forward flight, tail rotors, brown–out, blade sailing and shipborne operations.
Concentrating on the well–known Sikorsky configuration of single main rotor with tail rotor, early chapters deal with the aerodynamics of the rotor in hover, vertical flight, forward flight and climb. Analysis of these motions is developed to the stage of obtaining the principal results for thrust, power and associated quantities. Later chapters turn to the characteristics of the overall helicopter, its performance, stability and control, and the important field of aerodynamic research is discussed, with some reference also to aerodynamic design practice.
This introductory level treatment to the aerodynamics of helicopter flight will appeal to aircraft design engineers and undergraduate and graduate students in aircraft design, as well as practising engineers looking for an introduction to or refresher course on the subject.
Basic Helicopter Aerodynamics, now in its third edition, is widely appreciated as an easily accessible, rounded introduction to the first principles of the aerodynamics of helicopter flight. Concentrating on the well-known Sikorsky configuration of single main rotor with tail rotor, the authors avoid the lengthy mathematical treatment of some textbooks, thereby making the material accessible to undergraduates as well as engineers looking for an introduction to the subject. Early chapters deal with the aerodynamics of the rotor in hover, vertical flight, forward flight and climb. Analysis of these motions is developed to the stage of obtaining the principal results for thrust, power and associated quantities. Later chapters turn to the characteristics of the overall helicopter, its performance, stability and control, and the important field of aerodynamic research is discussed, with some reference also to aerodynamic design practice. This third edition has been brought up to date with a complete new set of illustrations & imagery, as well as an accompanying website that contains all the calculation files used in the book, problems, solutions and powerpoint slides. The authors address the unique considerations applicable to rotor UAVs/ MAVs, and coverage of blade dynamics is expanded to include lagging and ground resonance, and new material is included on blade tip design, flow characteristics surrounding the rotor in forward flight, tail rotors, and brown-out, blade sailing and shipborne operations.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
hardcover. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_448181490
Quantité disponible : 1 disponible(s)
Vendeur : Rob the Book Man, Vancouver, WA, Etats-Unis
Hardcover. Etat : Very Good. Hardback in very good condition. Name written on inside of front cover, otherwise clean. An Account of First Principles in the Fluid Mechanics and Flight Dynamics of the Single Rotor Helicopter. N° de réf. du vendeur 6336
Quantité disponible : 1 disponible(s)