"authoritative, funny, and concise"Steven Strogatz, Professor of Applied Mathematics, Cornell University.The brain has always had a fundamental advantage over conventional computers: it can learn. However, a new generation of artificial intelligence algorithms, in the form of deep neural networks, is rapidly eliminating that advantage. Deep neural networks rely on adaptive algorithms to master a wide variety of tasks, including cancer diagnosis, object recognition, speech recognition, robotic control, chess, poker, backgammon and Go, at super-human levels of performance. In this richly illustrated book, key neural network learning algorithms are explained informally first, followed by detailed mathematical analyses. Topics include both historically important neural networks (perceptrons, Hopfield nets, Boltzmann machines and backpropagation networks), and modern deep neural networks (variational autoencoders, convolutional networks, generative adversarial networks, and reinforcement learning using SARSA and Q-learning). Online computer programs, collated from open source repositories, give hands-on experience of neural networks, and PowerPoint slides provide support for teaching. Written in an informal style, with a comprehensive glossary, tutorial appendices (e.g. Bayes' theorem, maximum likelihood estimation), and a list of further readings, this is an ideal introduction to the algorithmic engines of modern artificial intelligence.Dr James V Stone is an Honorary Reader in Vision and Computational Neuroscience at the University of Sheffield, England.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Gratuit expédition vers Etats-Unis
Destinations, frais et délaisEUR 4,37 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : ZBK Books, Carlstadt, NJ, Etats-Unis
Etat : acceptable. Used book - May contain writing, notes, highlighting, bends or folds. Text is readable, book is clean, and pages and cover mostly intact. May show normal wear and tear. Item may be missing CD. May include library marks. Fast Shipping. N° de réf. du vendeur ZWM.MX9A
Quantité disponible : 1 disponible(s)
Vendeur : SecondSale, Montgomery, IL, Etats-Unis
Etat : Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. N° de réf. du vendeur 00072614459
Quantité disponible : 1 disponible(s)
Vendeur : Broad Street Books, Branchville, NJ, Etats-Unis
paperback. Etat : New. Brand New Book. N° de réf. du vendeur 64463
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 35472699
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2317530040738
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 35472699-n
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Artificial Intelligence Engines: A Tutorial Introduction to the Mathematics of Deep Learning 0.65. Book. N° de réf. du vendeur BBS-9780956372819
Quantité disponible : 5 disponible(s)
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9780956372819
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9780956372819
Quantité disponible : Plus de 20 disponibles
Vendeur : WorldofBooks, Goring-By-Sea, WS, Royaume-Uni
Paperback. Etat : Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. N° de réf. du vendeur GOR010594377
Quantité disponible : 1 disponible(s)