Deep Learning is becoming increasingly important in a technology-dominated world. However, the building of computational models that accurately represent linguistic structures is complex, as it involves an in-depth knowledge of neural networks, and the understanding of advanced mathematical concepts such as calculus and statistics. This book makes these complexities accessible to those from a humanities and social sciences background, by providing a clear introduction to deep learning for natural language processing. It covers both theoretical and practical aspects, and assumes minimal knowledge of machine learning, explaining the theory behind natural language in an easy-to-read way. It includes pseudo code for the simpler algorithms discussed, and actual Python code for the more complicated architectures, using modern deep learning libraries such as PyTorch and Hugging Face. Providing the necessary theoretical foundation and practical tools, this book will enable readers to immediately begin building real-world, practical natural language processing systems.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Mihai Surdeanu is Associate Professor in the Computer Science Department at the University of Arizona. He works in both academia and industry on NLP systems that process and extract meaning from natural language.
Marco Antonio Valenzuela-Escárcega is a Research Scientist in the Computer Science department at the University of Arizona. He has worked on natural language processing projects in both industry and academia.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Books From California, Simi Valley, CA, Etats-Unis
paperback. Etat : Very Good. N° de réf. du vendeur mon0003841036
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 46521916-n
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Deep Learning for Natural Language Processing: A Gentle Introduction. Book. N° de réf. du vendeur BBS-9781009012652
Quantité disponible : 5 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781009012652
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 46521916
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. Deep Learning is becoming increasingly important in a technology-dominated world. However, the building of computational models that accurately represent linguistic structures is complex, as it involves an in-depth knowledge of neural networks, and the understanding of advanced mathematical concepts such as calculus and statistics. This book makes these complexities accessible to those from a humanities and social sciences background, by providing a clear introduction to deep learning for natural language processing. It covers both theoretical and practical aspects, and assumes minimal knowledge of machine learning, explaining the theory behind natural language in an easy-to-read way. It includes pseudo code for the simpler algorithms discussed, and actual Python code for the more complicated architectures, using modern deep learning libraries such as PyTorch and Hugging Face. Providing the necessary theoretical foundation and practical tools, this book will enable readers to immediately begin building real-world, practical natural language processing systems. A clear, accessible introduction to deep learning for natural language processing (NLP), this book is ideal for readers without a background in machine learning and NLP. It covers the necessary theoretical context using minimal jargon also covers practical aspects, using actual Python code for the neural architectures discussed. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781009012652
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 342 pages. 9.00x6.00x0.72 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __1009012657
Quantité disponible : 1 disponible(s)
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Paperback. Etat : New. Deep Learning is becoming increasingly important in a technology-dominated world. However, the building of computational models that accurately represent linguistic structures is complex, as it involves an in-depth knowledge of neural networks, and the understanding of advanced mathematical concepts such as calculus and statistics. This book makes these complexities accessible to those from a humanities and social sciences background, by providing a clear introduction to deep learning for natural language processing. It covers both theoretical and practical aspects, and assumes minimal knowledge of machine learning, explaining the theory behind natural language in an easy-to-read way. It includes pseudo code for the simpler algorithms discussed, and actual Python code for the more complicated architectures, using modern deep learning libraries such as PyTorch and Hugging Face. Providing the necessary theoretical foundation and practical tools, this book will enable readers to immediately begin building real-world, practical natural language processing systems. N° de réf. du vendeur LU-9781009012652
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781009012652_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 46521916-n
Quantité disponible : Plus de 20 disponibles