Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods – including parallel-distributed algorithms – through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Ernest K. Ryu is Assistant Professor of Mathematical Sciences at Seoul National University. He previously served as Assistant Adjunct Professor with the Department of Mathematics at the University of California, Los Angeles from 2016 to 2019, before joining Seoul National University in 2020. He received a BS with distinction in physics and electrical engineering from the California Institute of Technology in 2010; and then an MS in statistics and a PhD – with the Gene Golub Best Thesis Award – in computational mathematics at Stanford University in 2016. His current research focuses on mathematical optimization and machine learning.
Wotao Yin is Director of the Decision Intelligence Lab with Alibaba Group (US), Damo Academy, and a former Professor of Mathematics at the University of California, Los Angeles. He received his PhD in operations research from Columbia University in 2006. His numerous accolades include an NSF CAREER Award in 2008, an Alfred P. Sloan Research Fellowship in 2009, a Morningside Gold Medal in 2016, and a Damo Award and Egon Balas Prize in 2021. He invented fast algorithms for sparse optimization, image processing, and large-scale distributed optimization problems, and is among the top 1 percent of cited researchers by Clarivate Analytics. His research interests include computational optimization and its applications in signal processing, machine learning, and other data science problems.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Books From California, Simi Valley, CA, Etats-Unis
hardcover. Etat : Very Good. Cover and edges may have some wear. N° de réf. du vendeur mon0003875583
Quantité disponible : 1 disponible(s)
Vendeur : Books From California, Simi Valley, CA, Etats-Unis
hardcover. Etat : Fine. N° de réf. du vendeur mon0003874346
Quantité disponible : 3 disponible(s)
Vendeur : TextbookRush, Grandview Heights, OH, Etats-Unis
Etat : Brand New. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. N° de réf. du vendeur 52210433
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 44468807-n
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781009160858
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 44468807
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods including parallel-distributed algorithms through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms. This introduction to the theory of convex optimization algorithms presents a unified analysis of first-order optimization methods using the abstraction of monotone operators. The text empowers graduate students in mathematics, computer science, and engineering to choose and design the splitting methods best suited for a given problem. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781009160858
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 400 pages. 10.00x7.00x0.75 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __1009160850
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 44468807-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 44468807
Quantité disponible : Plus de 20 disponibles