Using diverse real-world examples, this text examines what models used for data analysis mean in a specific research context. What assumptions underlie analyses, and how can you check them? Building on the successful 'Data Analysis and Graphics Using R, ' 3rd edition (Cambridge, 2010), it expands upon topics including cluster analysis, exponential time series, matching, seasonality, and resampling approaches. An extended look at p-values leads to an exploration of replicability issues and of contexts where numerous p-values exist, including gene expression. Developing practical intuition, this book assists scientists in the analysis of their own data, and familiarizes students in statistical theory with practical data analysis. The worked examples and accompanying commentary teach readers to recognize when a method works and, more importantly, when it doesn't. Each chapter contains copious exercises. Selected solutions, notes, slides, and R code are available online, with extensive references pointing to detailed guides to R.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
John H. Maindonald is Contract Associate at Statistics Research Associates and was previously Visiting Fellow at the Australian National University. He has had wide experience both as a university lecturer and as a quantitative problem solver, working with researchers in diverse areas. He is the author of 'Statistical Computation' (1984), and the senior author of 'Data Analysis and Graphics Using R' (third edition, 2010).
W. John Braun is Professor at the University of British Columbia, where he is Director of the UBCO campus of the Banff International Research Station for Mathematical Innovation and Discovery. In 2020, he received the Statistical Society of Canada Award for Impact of Applied and Collaborative Work.
Jeffrey Andrews is Associate Professor at the University of British Columbia. He currently serves as Principal Co-director of the Master of Data Science program and President-elect of The Classification Society (TCS). He is the 2013 Distinguished Dissertation Award winner from TCS and a recipient of the 2017 Chikio Hayashi Award for Young Researchers from the International Federation of Classification Societies.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : WorldofBooks, Goring-By-Sea, WS, Royaume-Uni
Paperback. Etat : Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. N° de réf. du vendeur GOR014619348
Quantité disponible : 1 disponible(s)
Vendeur : BGV Books LLC, Murray, KY, Etats-Unis
Etat : Good. Exact ISBN match. Immediate shipping. No funny business. N° de réf. du vendeur 20250721066a
Quantité disponible : 1 disponible(s)
Vendeur : Books From California, Simi Valley, CA, Etats-Unis
hardcover. Etat : Very Good. N° de réf. du vendeur mon0003861526
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 47194947-n
Quantité disponible : 1 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. Using diverse real-world examples, this text examines what models used for data analysis mean in a specific research context. What assumptions underlie analyses, and how can you check them? Building on the successful 'Data Analysis and Graphics Using R,' 3rd edition (Cambridge, 2010), it expands upon topics including cluster analysis, exponential time series, matching, seasonality, and resampling approaches. An extended look at p-values leads to an exploration of replicability issues and of contexts where numerous p-values exist, including gene expression. Developing practical intuition, this book assists scientists in the analysis of their own data, and familiarizes students in statistical theory with practical data analysis. The worked examples and accompanying commentary teach readers to recognize when a method works and, more importantly, when it doesn't. Each chapter contains copious exercises. Selected solutions, notes, slides, and R code are available online, with extensive references pointing to detailed guides to R. Using diverse real-world examples, this book explores the use of R for data analysis, with extensive use of graphical presentation. It assists scientists in the analysis of their own data, demonstrating how to check the underlying assumptions, and gives students in statistical theory exposure to practical data analysis. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781009282277
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781009282277
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47194947
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781009282277_new
Quantité disponible : 1 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Hardcover. Etat : New. N° de réf. du vendeur 6666-GRD-9781009282277
Quantité disponible : 3 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 555 pages. 6.90x1.20x9.90 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __1009282271
Quantité disponible : 1 disponible(s)