Algebraic Varieties: Minimal Models and Finite Generation - Couverture rigide

Kawamata, Yujiro

 
9781009344678: Algebraic Varieties: Minimal Models and Finite Generation

Synopsis

The finite generation theorem is a major achievement in modern algebraic geometry. Based on the minimal model theory, it states that the canonical ring of an algebraic variety defined over a field of characteristic 0 is a finitely generated graded ring. This graduate-level text is the first to explain this proof. It covers the progress on the minimal model theory over the last 30 years, culminating in the landmark paper on finite generation by Birkar‒Cascini‒Hacon‒McKernan. Building up to this proof, the author presents important results and techniques that are now part of the standard toolbox of birational geometry, including Mori's bend-and-break method, vanishing theorems, positivity theorems, and Siu's analysis on multiplier ideal sheaves. Assuming only the basics in algebraic geometry, the text keeps prerequisites to a minimum with self-contained explanations of terminology and theorems.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Yujiro Kawamata is a professor at the University of Tokyo. He is the recipient of various prizes and awards, including the Mathematical Society of Japan Autumn award (1988), the Japan Academy of Sciences award (1990), ICM speaker (1990), and ISI Highly Cited Researcher (2001).

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.