Feature Engineering and Selection - Couverture souple

Kuhn, Max; Johnson, Kjell

 
9781032090856: Feature Engineering and Selection

Synopsis

The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Max Kuhn, Ph.D., is a software engineer at RStudio. He worked in 18 years in drug discovery and medical diagnostics applying predictive models to real data. He has authored numerous R packages for predictive modeling and machine learning.

Kjell Johnson, Ph.D., is the owner and founder of Stat Tenacity, a firm that provides statistical and predictive modeling consulting services. He has taught short courses on predictive modeling for the American Society for Quality, American Chemical Society, International Biometric Society, and for many corporations.

Kuhn and Johnson have also authored Applied Predictive Modeling, which is a comprehensive, practical guide to the process of building a predictive model. The text won the 2014 Technometrics Ziegel Prize for Outstanding Book.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9781138079229: Feature Engineering and Selection: A Practical Approach for Predictive Models

Edition présentée

ISBN 10 :  1138079227 ISBN 13 :  9781138079229
Editeur : CRC Press, 2019
Couverture rigide