The beginning of the age of artificial intelligence and machine learning has created new challenges and opportunities for data analysts, statisticians, mathematicians, econometricians, computer scientists and many others. At the root of these techniques are algorithms and methods for clustering and classifying different types of large datasets, including time series data.
Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students.
Features
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Elizabeth Ann Maharaj is an Associate Professor in the Department of Econometrics and Business Statistics at Monash University, Australia. She has a Ph.D. from Monash University on the Pattern Recognition of Time Series. Ann is an elected member of the International Statistical Institute (ISI), a member of the International Association of Statistical Computing (IASC) and of the Statistical Society of Australia (SSA). She is also an accredited statistician with the SSA. Ann's main research interests are in time series classification, wavelets analysis, fuzzy classification and interval time series analysis. She has also worked on research projects in climatology, environmental science, labour markets, human mobility and finance.
Pierpaolo D'Urso is a Full Professor of Statistics at Sapienza - University of Rome. He is the chair of the Department of Social and Economic Sciences, Sapienza - University of Rome. He received his Ph.D. in Statistics and his bachelor's degree in Statistics both from Sapienza. He is an associate editor and a member of the editorial board of several journals. He has been member of several program committees of international conferences and guest editor of special issues. His recent research activity is focus on fuzzy clustering, clustering and classification of time series, clustering of complex structures of data, and statistical methods for marketing, local labour systems, electoral studies and environmental monitoring.
Jorge Caiado has a Ph.D. in Applied Mathematics to Economics and Management. He is a Professor of Econometrics and Forecasting Methods at the Lisbon School of Economics and Management (ISEG) and a Researcher at the Centre for Applied Mathematics and Economics. His research in econometrics, finance, time series analysis, forecasting methods and statistical software has led to numerous publications in scientific journals and books. He serves as an econometric and statistical consultant and trainer for numerous companies and organizations including central banks, commercial and investment banks, bureau of statistics, bureau of economic analysis, transportation and logistics companies, health companies and insurance companies. He is also a co-founder and partner of GlobalSolver.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 17,58 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Elizabeth Ann Maharaj is an Associate Professor in the Department of Econometrics and Business Statistics at Monash University, Australia. She has a Ph.D. from Monash University on the Pattern Recognition of Time Series. Ann is an electe. N° de réf. du vendeur 487066191
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 379179842
Quantité disponible : 3 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The beginning of the age of artificial intelligence and machine learning has created new challenges and opportunities for data analysts, statisticians, mathematicians, econometricians, computer scientists and many others. At the root of these techniques are algorithms and methods for clustering and classifying different types of large datasets, including time series data. Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students.FeaturesProvides an overview of the methods and applications of pattern recognition of time seriesCovers a wide range of techniques, including unsupervised and supervised approachesIncludes a range of real examples from medicine, finance, environmental science, and moreR and MATLAB code, and relevant data sets are available on a supplementary website. N° de réf. du vendeur 9781032093499
Quantité disponible : 2 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 185. N° de réf. du vendeur B9781032093499
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 43012080
Quantité disponible : 10 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 244 pages. 9.21x6.14x0.63 inches. In Stock. N° de réf. du vendeur __1032093498
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 43012080
Quantité disponible : 10 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. N° de réf. du vendeur 18384724119
Quantité disponible : 3 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 43012080-n
Quantité disponible : 10 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 43012080-n
Quantité disponible : 10 disponible(s)