Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework.
The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems.
The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Piotr Kokoszka is a professor of statistics at Colorado State University. His research interests include functional data analysis, with emphasis on dependent data structures, and applications to geosciences and finance. He is a coauthor of the monograph Inference for Functional Data with Applications (with L. Horváth). He is an associate editor of several journals, including Computational Statistics and Data Analysis, Journal of Multivariate Analysis, Journal of Time Series Analysis, and Scandinavian Journal of Statistics.
Matthew Reimherr is an assistant professor of statistics at Pennsylvania State University. His research interests include functional data analysis, with emphasis on longitudinal studies and applications to genetics and public health. He is an associate editor of Statistical Modeling.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 4,72 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 185. N° de réf. du vendeur B9781032096599
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 379178555
Quantité disponible : 3 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Piotr Kokoszka is a professor of statistics at Colorado State University. His research interests include functional data analysis, with emphasis on dependent data structures, and applications to geosciences and finance. He is a coauthor . N° de réf. du vendeur 487065271
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 302 pages. 9.25x6.25x0.50 inches. In Stock. N° de réf. du vendeur __1032096594
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26384725476
Quantité disponible : 3 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. N° de réf. du vendeur 18384725486
Quantité disponible : 3 disponible(s)