Accurately detecting crack localization is not an easy task. This book addresses important issues in detecting crack-like objects and provides a practical smart pavement surface inspection system using deep learning.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Kaige Zhang has a B.S. degree (2011) in electronic engineering from the Harbin Institute of Technology, China, and a Ph.D. degree (2019) in computer science from Utah State University, USA. His research interests include computer vision, machine learning, and the applications on intelligent transportation systems, precision agriculture, and biomedical data analytics. Dr. Zhang has been the reviewer for many top journals in his research areas, such as IEEE Transactions on ITS, IEEE Trans. On T-IV, J. of Comput. in Civil Eng., Scientific Report, etc.
Heng-Da Cheng has a Ph.D. in Electrical Engineering from Purdue University, West Lafayette, IN, USA in 1985 under the supervision Prof. K. S. Fu. He is a Full Professor with the Department of Computer Science, Utah State University, Logan, UT. He has authored over 350 technical papers and is the Associate Editor of Pattern Recognition, Information Sciences, and New Mathematics and Natural Computation.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 17,30 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 7,03 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 45515725
Quantité disponible : Plus de 20 disponibles
Vendeur : Speedyhen, London, Royaume-Uni
Etat : NEW. N° de réf. du vendeur NW9781032181189
Quantité disponible : 3 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. New copy - Usually dispatched within 4 working days. 166. N° de réf. du vendeur B9781032181189
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781032181189_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 45515725-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2023. 1st Edition. Hardcover. . . . . . N° de réf. du vendeur V9781032181189
Quantité disponible : 3 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 402146823
Quantité disponible : 3 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Kaige Zhang has a B.S. degree (2011) in electronic engineering from the Harbin Institute of Technology, China, and a Ph.D. degree (2019) in computer science from Utah State University, USA. His research interests include computer vision,. N° de réf. du vendeur 780207360
Quantité disponible : 3 disponible(s)
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
HRD. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L1-9781032181189
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Computer vision-based crack-like object detection has many useful applications, such as inspecting/monitoring pavement surface, underground pipeline, bridge cracks, railway tracks etc. However, in most contexts, cracks appear as thin, irregular long-narrow objects, and often are buried in complex, textured background with high diversity which make the crack detection very challenging. During the past a few years, deep learning technique has achieved great success and has been utilized for solving a variety of object detection problems.This book discusses crack-like object detection problem comprehensively. It starts by discussing traditional image processing approaches for solving this problem, and then introduces deep learning-based methods. It provides a detailed review of object detection problems and focuses on the most challenging problem, crack-like object detection, to dig deep into the deep learning method. It includes examples of real-world problems, which are easy to understand and could be a good tutorial for introducing computer vision and machine learning. N° de réf. du vendeur 9781032181189
Quantité disponible : 3 disponible(s)