Functional Data Analysis with R presents many ideas for handling functional data including dimension reduction techniques, smoothing, functional regression, structured decompositions of curves and clustering.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Ciprian M. Crainiceanu is Professor of Biostatistics at Johns Hopkins University working on wearable and implantable technology (WIT), signal processing, and clinical neuroimaging. He has extensive experience in mixed effects modeling, semiparametric regression, and functional data analysis with application to data generated by emerging technologies.
Jeff Goldsmith is Associate Dean for Data Science and Associate Professor of Biostatistics at the Columbia University Mailman School of Public Health. His work in functional data analysis includes methodological and computational advances with applications in reaching kinematics, wearable devices, and neuroimaging.
Andrew Leroux is an Assistant Professor of Biostatistics and Informatics at the University of Colorado. His interests include the development of methodology in functional data analysis, particularly related to wearable technologies and intensive longitudinal data.
Erjia Cui is an Assistant Professor of Biostatistics at the University of Minnesota. His research interests include developing functional data analysis methods and semiparametric regression models with reproducible software, with applications in wearable devices, mobile health, and imaging.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 17,42 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 7 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Speedyhen, London, Royaume-Uni
Etat : NEW. N° de réf. du vendeur NW9781032244716
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 46772672-n
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781032244716_new
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. New copy - Usually dispatched within 4 working days. 790. N° de réf. du vendeur B9781032244716
Quantité disponible : 1 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. Emerging technologies generate data sets of increased size and complexity that require new or updated statistical inferential methods and scalable, reproducible software. These data sets often involve measurements of a continuous underlying process, and benefit from a functional data perspective. Functional Data Analysis with R presents many ideas for handling functional data including dimension reduction techniques, smoothing, functional regression, structured decompositions of curves, and clustering. The idea is for the reader to be able to immediately reproduce the results in the book, implement these methods, and potentially design new methods and software that may be inspired by these approaches.Features:Functional regression models receive a modern treatment that allows extensions to many practical scenarios and development of state-of-the-art softwareThe connection between functional regression, penalized smoothing, and mixed effects models is used as the cornerstone for inferenceMultilevel, longitudinal, and structured functional data are discussed with emphasis on emerging functional data structuresMethods for clustering functional data before and after smoothing are discussedMultiple new functional data sets with dense and sparse sampling designs from various application areas are presented, including the NHANES linked accelerometry and mortality data, COVID-19 mortality data, CD4 counts data and the CONTENT child growth studyStep-by-step software implementations are included, along with a supplementary website featuring software, data, and tutorialsMore than 100 plots for visualization of functional data are presentedFunctional Data Analysis with R is primarily aimed at undergraduate, master's and PhD students, as well as data scientists and researchers working on functional data analysis. The book can be read at different levels and combines state-of-the-art software, methods, and inference. It can be used for self-learning, teaching, and research, and will particularly appeal to anyone who is interested in practical methods for hands-on, problem-forward functional data analysis. The reader should have some basic coding experience, but expertise in R is not required. Functional Data Analysis with R presents many ideas for handling functional data including dimension reduction techniques, smoothing, functional regression, structured decompositions of curves and clustering. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781032244716
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Ciprian M. Crainiceanu is Professor of Biostatistics at Johns Hopkins University working on wearable and implantable technology (WIT), signal processing, and clinical neuroimaging. He has extensive experience in mixed effects modeling, semiparamet. N° de réf. du vendeur 1109644591
Quantité disponible : 2 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 398279964
Quantité disponible : 3 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 46772672
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 46772672
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Neuware - Functional Data Analysis with R presents many ideas for handling functional data including dimension reduction techniques, smoothing, functional regression, structured decompositions of curves and clustering. N° de réf. du vendeur 9781032244716
Quantité disponible : 1 disponible(s)