Articles liés à Handbook on Federated Learning: Advances, Applications...

Handbook on Federated Learning: Advances, Applications and Opportunities - Couverture souple

 
9781032471631: Handbook on Federated Learning: Advances, Applications and Opportunities

Synopsis

Federated learning is a Distributed Machine Learning model that has been used in many applications today. Most edge devices can execute models with local dataset since their computation power is unutilized.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Saravanan Krishnan is working as Associate Professor at the Department of Computer Science & Engineering, College of Engineering, Guindy, Anna University, Tirunelveli, India. He has published papers in 14 international conferences and 30 reputed journals. He has also written 16 book chapters and nine books with reputed publishers. He is an active researcher and academician. Also, he is reviewer for many reputed journals published by Elsevier, IEEE etc.

A. Jose Anand is working as Professor at the Department of Electronics and Communication Engineering, KCG College of Technology, Chennai, India. He has one year of industrial experience and twenty-four years of teaching experience. He has presented several papers at conferences. He has published several papers in reputed journals. He has also published books for polytechnic & engineering subjects. He is a Member of CSI, IEI, IET, IETE, ISTE, INS, QCFI and EWB. His current research interest is in Wireless Sensor Networks, Embedded Systems, IoT, Machine Learning and Image Processing, etc.

R. Srinivasan is working as Professor at the Department of Computer Science and Engineering, School of Computing, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India having vast teaching experience. He received a Ph.D. in Computer Science and Engineering from Vel Tech University. His research interest spans across Computer Networking, Wireless Sensor Networks and Internet of Things (IoT). Much of his work has been on improvising the understanding, design and the performance of networked computer systems and performance evaluation. He is a recognised supervisor at Vel Tech University guiding 8 research scholars. He has published over 25 papers in reputed journals and conferences. He had delivered technical sessions to various reputed institutes. He has been a reviewer member for many conferences and has served as technical committee member. He is also a member in many professional societies and a member in IEEE. He has published several reputed articles. He is presently Editor in Chief for Wireless Networks, Peer-to-Peer Networking and Applications- Springer Series.

R. Kavitha received a master's in software engineering from College of Engineering, Anna University, India and Ph. D in Computer Science and Engineering from Vel Tech, Chennai, India. Her research areas are Machine Learning, Image Processing and Software Engineering. She worked as Professor at Vel Tech, Chennai with 15 years of teaching experience. She had guided projects of many UG and PG students. She is a recognised supervisor at Vel Tech University guiding 8 research scholars. She has published over 35 papers in reputed journals. She is an active member of IEEE and IEEE WIE and has been a part of events in association with professional societies. She had delivered technical sessions to various reputed institutes. She has been a reviewer member for many conferences and has served as technical committee member.

S. Suresh was a Professor of Cloud Big Data and Analytics, Faculty of Computer Science and Engineering at P.A. College of Engineering and Technology, India. He undertook extensive research on Big Data & Analytics, Internet of Things and Machine Learning. He wrote more than 30 scientific papers some of which have been published in well-known journals from Elsevier, Springer, etc. and presented at important conferences. In his lifetime, he had received various best paper and best speaker awards. Suresh authored 6 books and numerous book chapters. He fetched research and events grants from various Indian agencies. His research is summarized at Google Scholar Citation. He also regularly tutors, advises and provides consulting support to regional firms with respect to their Cloud Big Data Analytics, IoT, Machine Learning and Mobile Application Development.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 64,18

Autre devise

EUR 17,30 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 68,01

Autre devise

EUR 10,39 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781032471624: Handbook on Federated Learning: Advances, Applications and Opportunities

Edition présentée

ISBN 10 :  103247162X ISBN 13 :  9781032471624
Editeur : CRC Press, 2023
Couverture rigide

Résultats de recherche pour Handbook on Federated Learning: Advances, Applications...

Image d'archives

Edité par CRC Press, 2025
ISBN 10 : 1032471638 ISBN 13 : 9781032471631
Neuf Couverture souple

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 409952341

Contacter le vendeur

Acheter neuf

EUR 68,01
Autre devise
Frais de port : EUR 10,39
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image d'archives

Krishnan, Saravanan (EDT); Anand, A. Jose (EDT); Srinivasan, R. (EDT); Kavitha, R. (EDT); Suresh, S. (EDT)
Edité par CRC Press, 2025
ISBN 10 : 1032471638 ISBN 13 : 9781032471631
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 50235898

Contacter le vendeur

Acheter D'occasion

EUR 64,18
Autre devise
Frais de port : EUR 17,30
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image d'archives

Krishnan, Saravanan (EDT); Anand, A. Jose (EDT); Srinivasan, R. (EDT); Kavitha, R. (EDT); Suresh, S. (EDT)
Edité par CRC Press, 2025
ISBN 10 : 1032471638 ISBN 13 : 9781032471631
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 50235898

Contacter le vendeur

Acheter D'occasion

EUR 65,69
Autre devise
Frais de port : EUR 17,61
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image d'archives

Edité par CRC Press, 2025
ISBN 10 : 1032471638 ISBN 13 : 9781032471631
Neuf Couverture souple

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 18404283264

Contacter le vendeur

Acheter neuf

EUR 80,66
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image d'archives

Krishnan, Saravanan (EDT); Anand, A. Jose (EDT); Srinivasan, R. (EDT); Kavitha, R. (EDT); Suresh, S. (EDT)
Edité par CRC Press, 2025
ISBN 10 : 1032471638 ISBN 13 : 9781032471631
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 50235898-n

Contacter le vendeur

Acheter neuf

EUR 73,50
Autre devise
Frais de port : EUR 17,30
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image d'archives

Krishnan, Saravanan (EDT); Anand, A. Jose (EDT); Srinivasan, R. (EDT); Kavitha, R. (EDT); Suresh, S. (EDT)
Edité par CRC Press, 2025
ISBN 10 : 1032471638 ISBN 13 : 9781032471631
Neuf Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 50235898-n

Contacter le vendeur

Acheter neuf

EUR 74,03
Autre devise
Frais de port : EUR 17,61
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image d'archives

Edité par CRC Press, 2025
ISBN 10 : 1032471638 ISBN 13 : 9781032471631
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26404283274

Contacter le vendeur

Acheter neuf

EUR 86,47
Autre devise
Frais de port : EUR 7,79
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image fournie par le vendeur

A. Jose Anand
ISBN 10 : 1032471638 ISBN 13 : 9781032471631
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware - Federated learning is a Distributed Machine Learning model that has been used in many applications today. Most edge devices can execute models with local dataset since their computation power is unutilized. N° de réf. du vendeur 9781032471631

Contacter le vendeur

Acheter neuf

EUR 83,56
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Saravanan Krishnan
Edité par Taylor & Francis Ltd, London, 2025
ISBN 10 : 1032471638 ISBN 13 : 9781032471631
Neuf Paperback

Vendeur : CitiRetail, Stevenage, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Mobile, wearable, and self-driving telephones are just a few examples of modern distributed networks that generate enormous amount of information every day. Due to the growing computing capacity of these devices as well as concerns over the transfer of private information, it has become important to process the part of the data locally by moving the learning methods and computing to the border of devices. Federated learning has developed as a model of education in these situations. Federated learning (FL) is an expert form of decentralized machine learning (ML). It is essential in areas like privacy, large-scale machine education and distribution. It is also based on the current stage of ICT and new hardware technology and is the next generation of artificial intelligence (AI). In FL, central ML model is built with all the data available in a centralised environment in the traditional machine learning. It works without problems when the predictions can be served by a central server. Users require fast responses in mobile computing, but the model processing happens at the sight of the server, thus taking too long. The model can be placed in the end-user device, but continuous learning is a challenge to overcome, as models are programmed in a complete dataset and the end-user device lacks access to the entire data package. Another challenge with traditional machine learning is that user data is aggregated at a central location where it violates local privacy policies laws and make the data more vulnerable to data violation. This book provides a comprehensive approach in federated learning for various aspects. Federated learning is a Distributed Machine Learning model that has been used in many applications today. Most edge devices can execute models with local dataset since their computation power is unutilized. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781032471631

Contacter le vendeur

Acheter neuf

EUR 79,21
Autre devise
Frais de port : EUR 29,36
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Saravanan Krishnan
Edité par Taylor & Francis Ltd, London, 2025
ISBN 10 : 1032471638 ISBN 13 : 9781032471631
Neuf Paperback

Vendeur : AussieBookSeller, Truganina, VIC, Australie

Évaluation du vendeur 3 sur 5 étoiles Evaluation 3 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Mobile, wearable, and self-driving telephones are just a few examples of modern distributed networks that generate enormous amount of information every day. Due to the growing computing capacity of these devices as well as concerns over the transfer of private information, it has become important to process the part of the data locally by moving the learning methods and computing to the border of devices. Federated learning has developed as a model of education in these situations. Federated learning (FL) is an expert form of decentralized machine learning (ML). It is essential in areas like privacy, large-scale machine education and distribution. It is also based on the current stage of ICT and new hardware technology and is the next generation of artificial intelligence (AI). In FL, central ML model is built with all the data available in a centralised environment in the traditional machine learning. It works without problems when the predictions can be served by a central server. Users require fast responses in mobile computing, but the model processing happens at the sight of the server, thus taking too long. The model can be placed in the end-user device, but continuous learning is a challenge to overcome, as models are programmed in a complete dataset and the end-user device lacks access to the entire data package. Another challenge with traditional machine learning is that user data is aggregated at a central location where it violates local privacy policies laws and make the data more vulnerable to data violation. This book provides a comprehensive approach in federated learning for various aspects. Federated learning is a Distributed Machine Learning model that has been used in many applications today. Most edge devices can execute models with local dataset since their computation power is unutilized. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9781032471631

Contacter le vendeur

Acheter neuf

EUR 99,66
Autre devise
Frais de port : EUR 32,03
De Australie vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 1 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre