Continuing the author's previous work on modeling, this book presents the most recent advances in high-order predictive modeling.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dan Gabriel Cacuci is a Distinguished Professor Emeritus in the Department of Mechanical Engineering at the University of South Carolina and the Karlsruhe Institute of Technology, Germany. He received his PhD in applied physics, mechanical and nuclear engineering from Columbia University. He is also the recipient of many awards including four honorary doctorates, the Ernest Orlando Lawrence Memorial award from the U.S. Deptartment of Energy and the Arthur Holly Compton, Eugene P. Wigner and the Glenn Seaborg Awards from the American Nuclear Society. He was named an "Inaugural Highly Ranked Scholar" by Scholar GPS, being ranked #2 in the world in the field of Uncertainty Analysis, #5 in the world in the field of Sensitivity Analysis, and ranked in the top 0.05% of all scholars worldwide.
This is Dr. Cacuci's fifth book for CRC Press. The others include, The Second-Order Adjoint Sensitivity Analysis Methodology (2018); Computational Methods for Data Evaluation and Assimilation with Ionel Michael Navon and Mihaela Ionescu-Bujor (2013); Sensitivity and Uncertainty Analysis, Volume I Applications to Large-Scale Systems (2003) and Volume II (2005) also with Mihaela Ionescu-Bujor and Michael Navon.
.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 17,11 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 10,23 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 396266889
Quantité disponible : 3 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dan Gabriel Cacuci is a Distinguished Professor Emeritus in the Department of Mechanical Engineering at the University of South Carolina and the Karlsruhe Institute of Technology, Germany. He received his PhD in applied physics, mechanical and nuclear en. N° de réf. du vendeur 1688433944
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. New copy - Usually dispatched within 4 working days. 716. N° de réf. du vendeur B9781032740560
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. 1st edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26401158742
Quantité disponible : 3 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781032740560_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 47828565-n
Quantité disponible : Plus de 20 disponibles
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Hardcover. Etat : new. Hardcover. Continuing the authors previous work on modeling, this book presents the most recent advances in high-order predictive modeling. The author begins with the mathematical framework of the 2nd-BERRU-PM methodology, an acronym that designates the second-order best-estimate with reduced uncertainties (2nd-BERRU) predictive modeling (PM). The 2nd-BERRU-PM methodology is fundamentally anchored in physics-based principles stemming from thermodynamics (maximum entropy principle) and information theory, being formulated in the most inclusive possible phase-space, namely the combined phase-space of computed and measured parameters and responses.The 2nd-BERRU-PM methodology provides second-order output (means and variances) but can incorporate, as input, arbitrarily high-order sensitivities of responses with respect to model parameters, as well as arbitrarily high-order moments of the initial distribution of uncertain model parameters, in order to predict best-estimate mean values for the model responses (i.e., results of interest) and calibrated model parameters, along with reduced predicted variances and covariances for these predicted responses and parameters. Continuing the authors previous work on modeling, this book presents the most recent advances in high-order predictive modeling. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9781032740560
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 47828565-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47828565
Quantité disponible : Plus de 20 disponibles
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. N° de réf. du vendeur 18401158748
Quantité disponible : 3 disponible(s)