The role of artificial intelligence is crucial in the domain of Earth Observation (EO) data analysis. Deep learning-based approaches have improved accuracy, but they have affected the reliability and transparency of EO data. It is critical to improve the explainability of EO data analysis algorithms and complex deep learning models to ensure the quality of spatial decisions. This book discusses the various advancements in Explainable AI and investigates their suitability for various EO data analyses offering best practices for implementing algorithms that facilitate big and efficient data processing. It lays the foundation of Explainable EO and helps readers build trustworthy, secure, and robust EO systems.
Features:
This book is intended for graduate students, researchers and academics in computer and data science, machine learning, and image processing, as well as professionals in geospatial data science using GIS and remote sensing in Earth and environmental sciences.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Arun PV is Assistant Professor at Indian Institute of Information Technology, Sricity, Chittoor, India. He leads the spatial data analytics and machine intelligence group. He has a PhD from IIT Bombay and has expertise in deep learning and remote sensing data analytics. He has over 15 years of research experience and has published over 70 publications in international journals and conference proceedings.
Jocelyn Chanussot is Professor of Signal and Image Processing at the Grenoble Institute of Technology in Grenoble, France. Chanussot was nominated as a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) in 2012 for his contributions to data fusion and image processing for remote sensing where he currently serves as an Editor-in-Chief
B Krishna Mohan is Professor at the Indian Institute of Technology, Bombay, India. From 2016 to 2019 he was the Head of the Centre and Institute's Chair Professor. He has authored over 150 publications in journals, book chapters, and conference proceedings. He also has led over 45 national and international sponsored projects. Prof. Mohan is the recipient of the Indian Society of Remote Sensing National Geospatial Award for Excellence in 2012.
D. Nagesh Kumar has been Professor in the Department of Civil Engineering, at the Indian Institute of Science, Bangalore, India since May 2002. He is a Fellow of the Indian Academy of Sciences, Bangalore. He is the co-author of 8 books and has published more than 220 papers including 131 in peer reviewed journals. He is the Editor-in-Chief of a journal on climate change and water and the Associate Editor for a journal on Hydraulic Engineering.
Alok Porwal is Professor at the Indian Institute of Technology, Bombay, India. He specializes in Earth Observation data processing and analysis. From 2021-2024 he was the Head of the Centre and the Institute Chair Professor. He is currently an Editor of an academic journal and has authored over 200 publications in journals, book chapters, and conference proceedings. He has also led over 20 national and international sponsored projects. He is the recipient of SP Sukhatme Award for Excellence.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 50257249
Quantité disponible : 10 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 50257249-n
Quantité disponible : 10 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. The role of artificial intelligence is crucial in the domain of Earth Observation (EO) data analysis. Deep learning-based approaches have improved accuracy, but they have affected the reliability and transparency of EO data. It is critical to improve the explainability of EO data analysis algorithms and complex deep learning models to ensure the quality of spatial decisions. This book discusses the various advancements in Explainable AI and investigates their suitability for various EO data analyses offering best practices for implementing algorithms that facilitate big and efficient data processing. It lays the foundation of Explainable EO and helps readers build trustworthy, secure, and robust EO systems.Features:Examines explainability of algorithms from the aspect of generalizability and reliabilityReviews state-of-the-art explainability strategies related to the preprocessing algorithmsProvides explanations for specific evaluation metrics of various EO data processing and preprocessing algorithmsDiscusses explainable ante-hoc and post-hoc approaches for EO data analysisServes as a foundational reference for developing future EO data processing strategiesAddresses the key challenges in making EO data processing algorithms interpretable and offers insights for the future of explainable EO data processingThis book is intended for graduate students, researchers and academics in computer and data science, machine learning, and image processing, as well as professionals in geospatial data science using GIS and remote sensing in Earth and environmental sciences. This book discusses the various advancements in Explainable AI and investigates their suitability for various EO data analyses offering best practices for implementing algorithms that facilitate big and efficient data processing. It lays the foundation of Explainable EO and helps readers build trustworthy, secure, and robust EO systems. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781032980966
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 409889089
Quantité disponible : 3 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 50257249
Quantité disponible : 10 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26404346526
Quantité disponible : 3 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 50257249-n
Quantité disponible : 10 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. N° de réf. du vendeur 18404346516
Quantité disponible : 3 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. New copy - Usually dispatched within 4 working days. N° de réf. du vendeur B9781032980966
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 320 pages. 9.18x6.12x9.21 inches. In Stock. N° de réf. du vendeur x-1032980966
Quantité disponible : 2 disponible(s)