Understanding Machine Learning: From Theory to Algorithms- - Couverture rigide

Shalev-Shwartz, Shai

 
9781107057135: Understanding Machine Learning: From Theory to Algorithms-

Synopsis

Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics and engineering.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos des auteurs

Shai Shalev-Shwartz is an Associate Professor at the School of Computer Science and Engineering at the Hebrew University of Jerusalem, Israel.

Shai Ben-David is a Professor in the School of Computer Science at the University of Waterloo, Canada.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9781107512825: Understanding Machine Learning: From Theory To Algorithms

Edition présentée

ISBN 10 :  1107512824 ISBN 13 :  9781107512825
Editeur : Cambridge India, 2015
Couverture souple