Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography, pattern recognition for satellite images from remote sensing, management of agriculture and forests, assessment of climate change, and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics are covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms, and deep learning, as well as the recent merging of machine learning and physics. End-of-chapter exercises allow readers to develop their problem-solving skills and online data sets allow readers to practise analysis of real data.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
William W. Hsieh is a professor emeritus in the Department of Earth, Ocean and Atmospheric Sciences at the University of British Columbia. Known as a pioneer in introducing machine learning to environmental science, he has written over 100 peer-reviewed journal papers on climate variability, machine learning, atmospheric science, oceanography, hydrology, and agricultural science. He is the author of the book Machine Learning Methods in the Environmental Sciences ( Cambridge University Press, 2009), the first single-authored textbook on machine learning for environmental scientists. Currently retired in Victoria, British Columbia, he enjoys growing organic vegetables.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Books From California, Simi Valley, CA, Etats-Unis
hardcover. Etat : Very Good. Cover and edges may have some wear. N° de réf. du vendeur mon0003657267
Quantité disponible : 6 disponible(s)
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
hardcover. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_453125381
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 44678990-n
Quantité disponible : 2 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography; pattern recognition for satellite images from remote sensing; management of agriculture and forests; assessment of climate change; and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics is covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms and deep learning, as well as the recent merging of machine learning and physics. Endofchapter exercises allow readers to develop their problem-solving skills, and online datasets allow readers to practise analysis of real data. This book provides a comprehensive guide to machine learning and statistics for students and researchers of environmental data science. A broad range of methods are covered together with the relevant background mathematics. End-of-chapter exercises and online data sets are included. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781107065550
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781107065550
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
HRD. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L1-9781107065550
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26395973447
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 401452184
Quantité disponible : 1 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
HRD. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L1-9781107065550
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 44678990
Quantité disponible : 2 disponible(s)