In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Second, he covers similar extensions as tools for discussing parametric polynomial systems, the notion of SAGBI-bases, Gröbner bases over invariant rings and Hironaka's theory. Finally, Mora shows how Hilbert's followers - notably Janet, Gunther and Macaulay - anticipated Buchberger's ideas and discusses the most promising recent alternatives by Gerdt (involutive bases) and Faugère (F4 and F5). This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Teo Mora is a Professor of Algebra in the Department of Mathematics at the University of Genoa.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 7,75 expédition depuis Etats-Unis vers France
Destinations, frais et délaisGratuit expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-22879
Quantité disponible : 5 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : Used. Index. N° de réf. du vendeur 26371868133
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : Used. 40 Illus. N° de réf. du vendeur 375258682
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : Used. N° de réf. du vendeur 18371868143
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781107109636_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781107109636
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. In this fourth and final volume the author covers extensions of Buchberger s Algorithm, including a discussion of the most promising recent alternatives to Groebner bases: Gerdt s involutive bases and Faugere s F4 and F5 algorithms. This completes the autho. N° de réf. du vendeur 35211329
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 800 pages. 9.50x6.50x2.00 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __1107109639
Quantité disponible : 1 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Second, he covers similar extensions as tools for discussing parametric polynomial systems, the notion of SAGBI-bases, Groebner bases over invariant rings and Hironaka's theory. Finally, Mora shows how Hilbert's followers - notably Janet, Gunther and Macaulay - anticipated Buchberger's ideas and discusses the most promising recent alternatives by Gerdt (involutive bases) and Faugere (F4 and F5). This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers. In this fourth and final volume the author covers extensions of Buchberger's Algorithm, including a discussion of the most promising recent alternatives to Groebner bases: Gerdt's involutive bases and Faugere's F4 and F5 algorithms. This completes the author's comprehensive treatise, which is a fundamental reference for any mathematical library. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781107109636
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2317530266666
Quantité disponible : Plus de 20 disponibles