Introduction to Probability and Statistics for Data Science provides a solid course in the fundamental concepts, methods and theory of statistics for students in statistics, data science, biostatistics, engineering, and physical science programs. It teaches students to understand, use, and build on modern statistical techniques for complex problems. The authors develop the methods from both an intuitive and mathematical angle, illustrating with simple examples how and why the methods work. More complicated examples, many of which incorporate data and code in R, show how the method is used in practice. Through this guidance, students get the big picture about how statistics works and can be applied. This text covers more modern topics such as regression trees, large scale hypothesis testing, bootstrapping, MCMC, time series, and fewer theoretical topics like the Cramer-Rao lower bound and the Rao-Blackwell theorem. It features more than 250 high-quality figures, 180 of which involve actual data. Data and R are code available on our website so that students can reproduce the examples and do hands-on exercises.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Steven E. Rigdon is Professor of Biostatistics at Saint Louis University. He is a fellow of the American Statistical Association and is the author of Statistical Methods for the Reliability of Repairable Systems Calculus, 8th and 9th editions, Monitoring the Health of Populations by Tracking Disease Outbreaks (2020), and Design of Experiments for Reliability Achievement (2022). He has received the Waldo Vizeau Award for technical contributions to quality, the Soren Bisgaard Award, and the Paul Simon Award for linking teaching and research. He is also Distinguished Research Professor Emeritus at Southern Illinois University Edwardsville.
Douglas C. Montgomery is Regents Professor and ASU Foundation Professor of Engineering at Arizona State University. He is an Honorary Member of the American Society for Quality, a fellow of the American Statistical Association, a fellow of the Institute of Industrial and Systems Engineering, and a fellow of the Royal Statistical Society. He is the author of fifteen other books including Design and Analysis of Experiments, 10th edition (2013) and Design of Experiments for Reliability Achievement (2022). He has received the Shewhart Medal, the Distinguished Service Medal, and the Brumbaugh Award from the ASQ, the Deming Lecture Award from the ASA, the Greenfield Medal from the Royal Statistical Society, and the George Box Medal from the European Network for Business and Industrial Statistics.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47610863
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 840 pages. 10.00x1.83x10.18 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __1107113040
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 47610863-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 47610863-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. Introduction to Probability and Statistics for Data Science provides a solid course in the fundamental concepts, methods and theory of statistics for students in statistics, data science, biostatistics, engineering, and physical science programs. It teaches students to understand, use, and build on modern statistical techniques for complex problems. The authors develop the methods from both an intuitive and mathematical angle, illustrating with simple examples how and why the methods work. More complicated examples, many of which incorporate data and code in R, show how the method is used in practice. Through this guidance, students get the big picture about how statistics works and can be applied. This text covers more modern topics such as regression trees, large scale hypothesis testing, bootstrapping, MCMC, time series, and fewer theoretical topics like the Cramer-Rao lower bound and the Rao-Blackwell theorem. It features more than 250 high-quality figures, 180 of which involve actual data. Data and R are code available on our website so that students can reproduce the examples and do hands-on exercises. This textbook is designed for students in statistics, data science, biostatistics, engineering, and physical science programs who need a solid course in the fundamental concepts, methods and theory of statistics to understand, use, and build on modern statistical techniques for complex problems. Examples and exercises incorporate data and R code. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781107113046
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47610863
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. 1st edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26401970838
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 394406217
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18401970844
Quantité disponible : 4 disponible(s)
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Hardcover. Etat : new. Hardcover. Introduction to Probability and Statistics for Data Science provides a solid course in the fundamental concepts, methods and theory of statistics for students in statistics, data science, biostatistics, engineering, and physical science programs. It teaches students to understand, use, and build on modern statistical techniques for complex problems. The authors develop the methods from both an intuitive and mathematical angle, illustrating with simple examples how and why the methods work. More complicated examples, many of which incorporate data and code in R, show how the method is used in practice. Through this guidance, students get the big picture about how statistics works and can be applied. This text covers more modern topics such as regression trees, large scale hypothesis testing, bootstrapping, MCMC, time series, and fewer theoretical topics like the Cramer-Rao lower bound and the Rao-Blackwell theorem. It features more than 250 high-quality figures, 180 of which involve actual data. Data and R are code available on our website so that students can reproduce the examples and do hands-on exercises. This textbook is designed for students in statistics, data science, biostatistics, engineering, and physical science programs who need a solid course in the fundamental concepts, methods and theory of statistics to understand, use, and build on modern statistical techniques for complex problems. Examples and exercises incorporate data and R code. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9781107113046
Quantité disponible : 1 disponible(s)