Greatly expanded, this new edition requires only an elementary background in discrete mathematics and offers a comprehensive introduction to the role of randomization and probabilistic techniques in modern computer science. Newly added chapters and sections cover topics including normal distributions, sample complexity, VC dimension, Rademacher complexity, power laws and related distributions, cuckoo hashing, and the Lovasz Local Lemma. Material relevant to machine learning and big data analysis enables students to learn modern techniques and applications. Among the many new exercises and examples are programming-related exercises that provide students with excellent training in solving relevant problems. This book provides an indispensable teaching tool to accompany a one- or two-semester course for advanced undergraduate students in computer science and applied mathematics.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Michael Mitzenmacher is a Professor of Computer Science in the School of Engineering and Applied Sciences at Harvard University, Massachusetts. Professor Mitzenmacher has authored or co-authored over 200 conference and journal publications on a variety of topics, including algorithms for the internet, efficient hash-based data structures, erasure and error-correcting codes, power laws, and compression. His work on low-density parity-check codes shared the 2002 IEEE Information Theory Society Best Paper Award and won the 2009 ACM SIGCOMM Test of Time Award. He was elected as the Chair of the ACM Special Interest Group on Algorithms and Computation Theory in 2015.
Eli Upfal is a Professor of Computer Science at Brown University, where he was also the department chair from 2002 to 2007. Prior to joining Brown in 1998, he was a researcher and project manager at the IBM Almaden Research Center, and a professor at the Weizmann Institute of Science, Israel. His main research interests are randomized algorithms, probabilistic analysis of algorithms, and computational statistics, with applications ranging from combinatorial and stochastic optimization, massive data analysis and sampling complexity to computational biology, and computational finance.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,47 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : BooksRun, Philadelphia, PA, Etats-Unis
Hardcover. Etat : Very Good. 2. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. N° de réf. du vendeur 110715488X-8-1
Quantité disponible : 1 disponible(s)
Vendeur : Books From California, Simi Valley, CA, Etats-Unis
hardcover. Etat : Fine. N° de réf. du vendeur mon0003777349
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. N° de réf. du vendeur 26788107-5
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. This greatly expanded new edition, requiring only an elementary background in discrete mathematics, comprehensively covers randomization and probabilistic techniques in modern computer science. It includes new material relevant to machine learning and big d. N° de réf. du vendeur 136028171
Quantité disponible : 1 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur DB-9781107154889
Quantité disponible : 1 disponible(s)
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur DB-9781107154889
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781107154889_new
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. N° de réf. du vendeur 26788107-5
Quantité disponible : 1 disponible(s)
Vendeur : Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Allemagne
Buch. Etat : Neu. Neuware -Greatly expanded, this new edition requires only an elementary background in discrete mathematics and offers a comprehensive introduction to the role of randomization and probabilistic techniques in modern computer science. Newly added chapters and sections cover topics including normal distributions, sample complexity, VC dimension, Rademacher complexity, power laws and related distributions, cuckoo hashing, and the Lovasz Local Lemma. Material relevant to machine learning and big data analysis enables students to learn modern techniques and applications. Among the many new exercises and examples are programming-related exercises that provide students with excellent training in solving relevant problems. This book provides an indispensable teaching tool to accompany a one- or two-semester course for advanced undergraduate students in computer science and applied mathematics. 467 pp. Englisch. N° de réf. du vendeur 9781107154889
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. Neuware -Greatly expanded, this new edition requires only an elementary background in discrete mathematics and offers a comprehensive introduction to the role of randomization and probabilistic techniques in modern computer science. Newly added chapters and sections cover topics including normal distributions, sample complexity, VC dimension, Rademacher complexity, power laws and related distributions, cuckoo hashing, and the Lovasz Local Lemma. Material relevant to machine learning and big data analysis enables students to learn modern techniques and applications. Among the many new exercises and examples are programming-related exercises that provide students with excellent training in solving relevant problems. This book provides an indispensable teaching tool to accompany a one- or two-semester course for advanced undergraduate students in computer science and applied mathematics. 467 pp. Englisch. N° de réf. du vendeur 9781107154889
Quantité disponible : 1 disponible(s)