This unique textbook provides an introduction to statistical inference with network data. The authors present a self-contained derivation and mathematical formulation of methods, review examples, and real-world applications, as well as provide data and code in the R environment that can be customised. Inferential network analysis transcends fields, and examples from across the social sciences are discussed (from management to electoral politics), which can be adapted and applied to a panorama of research. From scholars to undergraduates, spanning the social, mathematical, computational and physical sciences, readers will be introduced to inferential network models and their extensions. The exponential random graph model and latent space network model are paid particular attention and, fundamentally, the reader is given the tools to independently conduct their own analyses.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Skyler J. Cranmer is the Carter Phillips and Sue Henry Professor of Political Science at The Ohio State University.
Bruce A. Desmarais is the DeGrandis-McCourtney Early Career Professor in Political Science at Penn State University.
Jason William Morgan is the Vice President for Behavioural Intelligence: Aware, and visiting scholar in Political Science at The Ohio State University.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : AMM Books, Gillingham, KENT, Royaume-Uni
hardcover. Etat : Very Good. In stock ready to dispatch from the UK. N° de réf. du vendeur mon0000298635
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781107158122_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 291 pages. 9.00x6.00x1.00 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __1107158125
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781107158122
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2317530267629
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 580. N° de réf. du vendeur C9781107158122
Quantité disponible : Plus de 20 disponibles
Vendeur : Toscana Books, AUSTIN, TX, Etats-Unis
Hardcover. Etat : new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. N° de réf. du vendeur Scanned1107158125
Quantité disponible : 1 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. This unique textbook provides an introduction to statistical inference with network data. The authors present a self-contained derivation and mathematical formulation of methods, review examples, and real-world applications, as well as provide data and code in the R environment that can be customised. Inferential network analysis transcends fields, and examples from across the social sciences are discussed (from management to electoral politics), which can be adapted and applied to a panorama of research. From scholars to undergraduates, spanning the social, mathematical, computational and physical sciences, readers will be introduced to inferential network models and their extensions. The exponential random graph model and latent space network model are paid particular attention and, fundamentally, the reader is given the tools to independently conduct their own analyses. Introduces foundational statistical models for network data, augmenting theoretical discussion with applications across the social sciences implemented in the R language. An introductory text or reference for researchers, graduate students, and advanced undergraduate students across the social, mathematical, computational and physical sciences. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781107158122
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26379908655
Quantité disponible : 4 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. This unique textbook provides an introduction to statistical inference with network data. The authors present a self-contained derivation and mathematical formulation of methods, review examples, and real-world applications, as well as provide data and code in the R environment that can be customised. Inferential network analysis transcends fields, and examples from across the social sciences are discussed (from management to electoral politics), which can be adapted and applied to a panorama of research. From scholars to undergraduates, spanning the social, mathematical, computational and physical sciences, readers will be introduced to inferential network models and their extensions. The exponential random graph model and latent space network model are paid particular attention and, fundamentally, the reader is given the tools to independently conduct their own analyses. Introduces foundational statistical models for network data, augmenting theoretical discussion with applications across the social sciences implemented in the R language. An introductory text or reference for researchers, graduate students, and advanced undergraduate students across the social, mathematical, computational and physical sciences. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781107158122
Quantité disponible : 1 disponible(s)