In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book - extensively rewritten for its second edition - will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Peter Smith was formerly Senior Lecturer in Philosophy at the University of Cambridge. His books include Explaining Chaos (1998) and An Introduction to Formal Logic (2003) and he is also a former editor of the journal Analysis.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 29,82 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 25,56 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Toscana Books, AUSTIN, TX, Etats-Unis
Paperback. Etat : new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. N° de réf. du vendeur Scanned1107606756
Quantité disponible : 1 disponible(s)
Vendeur : SecondSale, Montgomery, IL, Etats-Unis
Etat : Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. N° de réf. du vendeur 00085467244
Quantité disponible : 2 disponible(s)