Bayesian Inference for Gene Expression and Proteomics - Couverture souple

 
9781107636989: Bayesian Inference for Gene Expression and Proteomics

Synopsis

Expert overviews of Bayesian methodology, tools and software for multi-platform high-throughput experimentation.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos des auteurs

Kim-Anh Do is a Professor in the Department of Biostatistics and Applied Mathematics at the University of Texas M. D. Anderson Cancer Center. Her research interests are in computer-intensive statistical methods with recent focus in the development of methodology and software to analyze data produced from high-throughput optimization.

Peter Müller is a Professor in the Department of Biostatistics and Applied Mathematics at the University of Texas M. D. Anderson Cancer Center. His research interests and contributions are in the areas of Markov chain Monte Carlo posterior simulation, nonparametric Bayesian inference, hierarchical models, mixture models and Bayesian decisions problems.

Marina Vannucci is a Professor of Statistics at Rice University. Her research focuses on the theory and practice of Bayesian variable selection techniques and on the development of wavelet-based statistical models and their applications. Her work is often motivated by real problems that need to be addressed with suitable statistical methods.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9780521860925: Bayesian Inference for Gene Expression and Proteomics

Edition présentée

ISBN 10 :  052186092X ISBN 13 :  9780521860925
Editeur : Cambridge University Press, 2006
Couverture rigide