Meaningful use of advanced Bayesian methods requires a good understanding of the fundamentals. This engaging book explains the ideas that underpin the construction and analysis of Bayesian models, with particular focus on computational methods and schemes. The unique features of the text are the extensive discussion of available software packages combined with a brief but complete and mathematically rigorous introduction to Bayesian inference. The text introduces Monte Carlo methods, Markov chain Monte Carlo methods, and Bayesian software, with additional material on model validation and comparison, transdimensional MCMC, and conditionally Gaussian models. The inclusion of problems makes the book suitable as a textbook for a first graduate-level course in Bayesian computation with a focus on Monte Carlo methods. The extensive discussion of Bayesian software - R/R-INLA, OpenBUGS, JAGS, STAN, and BayesX - makes it useful also for researchers and graduate students from beyond statistics.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
M. Antónia Amaral Turkman was, until 2013, full-time Professor in the Department of Statistics and Operations Research, Faculty of Sciences, University of Lisbon. Though retired from the university, she is still a member of its Center of Statistics and Applications, where she held the position of scientific coordinator until 2017. Her research interests are Bayesian statistics, medical and environmental statistics, and spatiotemporal modeling, with recent publications on computational methods in Bayesian statistics, with an emphasis on applications in health and forest fires. She has served as vice president of the Portuguese Statistical Society. She has taught courses on Bayesian statistics and computational statistics, among many others.
Carlos Daniel Paulino is senior academic researcher in the Center of Statistics and Applications and was associate professor with habilitation in the Department of Mathematics of the Instituto Superior Técnico, both at the University of Lisbon. He has published frequently on Bayesian statistics and categorical data, with emphasis on applications in biostatistics. He has served as president of the Portuguese Statistical Society. He taught many undergraduate and graduate level courses, notably in mathematical statistics and Bayesian statistics.
Peter Müller is Professor in the Department of Mathematics and the Department of Statistics and Data Science at the University of Texas, Austin. He has published widely on computational methods in Bayesian statistics, non-parametric Bayesian statistics, and decision problems, with emphasis on applications in biostatistics and bioinformatics. He has served as president of the International Society for Bayesian Analysis, and as chair for the Section on Bayesian Statistics of the American Statistical Association. Besides many graduate-level courses he has taught short courses on Bayesian biostatistics, Bayesian clinical trial design, non-parametric Bayesian inference, medical decision making, and more.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 16,98 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 16,98 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 33846963
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 33846963
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 33846963-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781108481038_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781108481038
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 529. N° de réf. du vendeur C9781108481038
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 243 pages. 9.00x6.00x0.75 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __1108481035
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 33846963-n
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book explains the fundamental ideas of Bayesian analysis, with a focus on computational methods such as MCMC and available software such as R/R-INLA, OpenBUGS, JAGS, Stan, and BayesX. It is suitable as a textbook for a first graduate-level course and a. N° de réf. du vendeur 255209545
Quantité disponible : Plus de 20 disponibles
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. Meaningful use of advanced Bayesian methods requires a good understanding of the fundamentals. This engaging book explains the ideas that underpin the construction and analysis of Bayesian models, with particular focus on computational methods and schemes. The unique features of the text are the extensive discussion of available software packages combined with a brief but complete and mathematically rigorous introduction to Bayesian inference. The text introduces Monte Carlo methods, Markov chain Monte Carlo methods, and Bayesian software, with additional material on model validation and comparison, transdimensional MCMC, and conditionally Gaussian models. The inclusion of problems makes the book suitable as a textbook for a first graduate-level course in Bayesian computation with a focus on Monte Carlo methods. The extensive discussion of Bayesian software - R/R-INLA, OpenBUGS, JAGS, STAN, and BayesX - makes it useful also for researchers and graduate students from beyond statistics. This book explains the fundamental ideas of Bayesian analysis, with a focus on computational methods such as MCMC and available software such as R/R-INLA, OpenBUGS, JAGS, Stan, and BayesX. It is suitable as a textbook for a first graduate-level course and as a user's guide for researchers and graduate students from beyond statistics. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781108481038
Quantité disponible : 1 disponible(s)