The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learning with eligibility traces. Chapter 3 discusses two player games including two player matrix games with both pure and mixed strategies. Numerous algorithms and examples are presented. Chapter 4 covers learning in multi-player games, stochastic games, and Markov games, focusing on learning multi-player grid games--two player grid games, Q-learning, and Nash Q-learning. Chapter 5 discusses differential games, including multi player differential games, actor critique structure, adaptive fuzzy control and fuzzy interference systems, the evader pursuit game, and the defending a territory games. Chapter 6 discusses new ideas on learning within robotic swarms and the innovative idea of the evolution of personality traits.
- Framework for understanding a variety of methods and approaches in multi-agent machine learning.
- Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning
- Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Howard M. Schwartz, PhD, received his B.Eng. Degree from McGill University, Montreal, Canada in une 1981 and his MS Degree and PhD Degree from MIT, Cambridge, USA in 1982 and 1987 respectively. He is currently a professor in systems and computer engineering at Carleton University, Canada. His research interests include adaptive and intelligent control systems, robotic, artificial intelligence, system modelling, system identification, and state estimation.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 22 expédition depuis Belgique vers Etats-Unis
Destinations, frais et délaisEUR 3,43 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 350. N° de réf. du vendeur 26132680539
Quantité disponible : 1 disponible(s)
Vendeur : Le Monde de Kamélia, Bruxelles, Belgique
Etat : as new. Livraison rapide, bien emballé, service client soigné.Pour tout renseignement complémentaire, n'hésitez pas à nous contacter. N° de réf. du vendeur 6D653E2999B2
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 350. N° de réf. du vendeur 127874180
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 350. N° de réf. du vendeur 18132680529
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2317530294908
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 16220029-n
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur FW-9781118362082
Quantité disponible : 15 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 16220029
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learning with eligibility traces. Chapter 3 discusses two player games including two player matrix games with both pure and mixed strategies. Numerous algorithms and examples are presented. Chapter 4 covers learning in multi-player games, stochastic games, and Markov games, focusing on learning multi-player grid gamestwo player grid games, Q-learning, and Nash Q-learning. Chapter 5 discusses differential games, including multi player differential games, actor critique structure, adaptive fuzzy control and fuzzy interference systems, the evader pursuit game, and the defending a territory games. Chapter 6 discusses new ideas on learning within robotic swarms and the innovative idea of the evolution of personality traits. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learning with eligibility traces. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781118362082
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 16220029-n
Quantité disponible : Plus de 20 disponibles