Provides an extensive, up-to-date treatment of techniques used for machine condition monitoring
Clear and concise throughout, this accessible book is the first to be wholly devoted to the field of condition monitoring for rotating machines using vibration signals. It covers various feature extraction, feature selection, and classification methods as well as their applications to machine vibration datasets. It also presents new methods including machine learning and compressive sampling, which help to improve safety, reliability, and performance.
Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines starts by introducing readers to Vibration Analysis Techniques and Machine Condition Monitoring (MCM). It then offers readers sections covering: Rotating Machine Condition Monitoring using Learning Algorithms; Classification Algorithms; and New Fault Diagnosis Frameworks designed for MCM. Readers will learn signal processing in the time-frequency domain, methods for linear subspace learning, and the basic principles of the learning method Artificial Neural Network (ANN). They will also discover recent trends of deep learning in the field of machine condition monitoring, new feature learning frameworks based on compressive sampling, subspace learning techniques for machine condition monitoring, and much more.
Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines is an excellent book for research students, postgraduate students, industrial practitioners, and researchers.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
HOSAMELDIN AHMED, Ph.D., has recently completed his Ph.D. degree in Electronic and Computer Engineering under the supervision of Professor Nandi at Brunel University London, UK. His research interests lie in the areas of signal processing, compressive sampling, and machine learning with applications to vibration-based machine condition monitoring.
ASOKE K. NANDI, Ph.D., is the Chair and Head of Electronic and Computer Engineering at Brunel University London, UK. He has held academic positions at Oxford, Imperial College London, Strathclyde, and Liverpool, as well as a Finland Distinguished Professorship in Jyvaskyla (Finland). Professor Nandi co-discovered the three particles known as W+, W- and Z0 which verified the unification of the electromagnetic force and the nuclear weak force and led to the award of the 1984 Nobel Prize for Physics to his two team leaders. He has authored over 600 technical publications, including 240 journal papers as well as five books. Professor Nandi is a Fellow of The Royal Academy of Engineering (UK).
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 38634194-n
Quantité disponible : 3 disponible(s)
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : New. N° de réf. du vendeur 9781119544623
Quantité disponible : Plus de 20 disponibles
Vendeur : Greenworld Books, Arlington, TX, Etats-Unis
Etat : good. Fast Free Shipping â" Good condition. It may show normal signs of use, such as light writing, highlighting, or library markings, but all pages are intact and the book is fully readable. A solid, complete copy that's ready to enjoy. N° de réf. du vendeur GWV.1119544629.G
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 38634194
Quantité disponible : 3 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. Provides an extensive, up-to-date treatment of techniques used for machine condition monitoring Clear and concise throughout, this accessible book is the first to be wholly devoted to the field of condition monitoring for rotating machines using vibration signals. It covers various feature extraction, feature selection, and classification methods as well as their applications to machine vibration datasets. It also presents new methods including machine learning and compressive sampling, which help to improve safety, reliability, and performance. Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines starts by introducing readers to Vibration Analysis Techniques and Machine Condition Monitoring (MCM). It then offers readers sections covering: Rotating Machine Condition Monitoring using Learning Algorithms; Classification Algorithms; and New Fault Diagnosis Frameworks designed for MCM. Readers will learn signal processing in the time-frequency domain, methods for linear subspace learning, and the basic principles of the learning method Artificial Neural Network (ANN). They will also discover recent trends of deep learning in the field of machine condition monitoring, new feature learning frameworks based on compressive sampling, subspace learning techniques for machine condition monitoring, and much more. Covers the fundamental as well as the state-of-the-art approaches to machine condition monitoringguiding readers from the basics of rotating machines to the generation of knowledge using vibration signalsProvides new methods, including machine learning and compressive sampling, which offer significant improvements in accuracy with reduced computational costsFeatures learning algorithms that can be used for fault diagnosis and prognosisIncludes previously and recently developed dimensionality reduction techniques and classification algorithms Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines is an excellent book for research students, postgraduate students, industrial practitioners, and researchers. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781119544623
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 38634194
Quantité disponible : Plus de 20 disponibles
Vendeur : Ubiquity Trade, Miami, FL, Etats-Unis
Etat : New. Brand new! Please provide a physical shipping address. N° de réf. du vendeur 9781119544623
Quantité disponible : Plus de 20 disponibles
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2020. 1st Edition. Hardback. . . . . . N° de réf. du vendeur V9781119544623
Quantité disponible : 15 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 38634194-n
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. Über den AutorHOSAMELDIN AHMED, Ph.D., has recently completed his Ph.D. degree in Electronic and Computer Engineering under the supervision of Professor Nandi at Brunel University London, UK. His research interests lie in. N° de réf. du vendeur 333885981
Quantité disponible : Plus de 20 disponibles