Computational Fractional Dynamical Systems
A rigorous presentation of different expansion and semi-analytical methods for fractional differential equations
Fractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering applications. Over the past several decades, the popularity of the fractional derivative has increased significantly in diverse areas such as electromagnetics, financial mathematics, image processing, and materials science. Obtaining analytical and numerical solutions of nonlinear partial differential equations of fractional order can be challenging and involve the development and use of different methods of solution.
Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications presents a variety of computationally efficient semi-analytical and expansion methods to solve different types of fractional models. Rather than focusing on a single computational method, this comprehensive volume brings together more than 25 methods for solving an array of fractional-order models. The authors employ a rigorous and systematic approach for addressing various physical problems in science and engineering.
Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications is an invaluable resource for advanced undergraduate students, graduate students, postdoctoral researchers, university faculty, and other researchers and practitioners working with fractional and integer order differential equations.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Snehashish Chakraverty, Senior Professor, Department of Mathematics (Applied Mathematics Group), National Institute of Technology Rourkela, Odisha, India.
Rajarama Mohan Jena, Senior Research Fellow, Department of Mathematics, National Institute of Technology Rourkela, Odisha, India.
Subrat Kumar Jena, Senior Research Fellow, Department of Mathematics, National Institute of Technology Rourkela, Odisha, India.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 17,58 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 4,75 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781119696957_new
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. Snehashish Chakraverty, Senior Professor, Department of Mathematics (Applied Mathematics Group), National Institute of Technology Rourkela, Odisha, India.Rajarama Mohan Jena, Senior Research Fellow, Department of Mathematics, National Institute of Technolog. N° de réf. du vendeur 544054658
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur FW-9781119696957
Quantité disponible : 15 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 38714706-n
Quantité disponible : 19 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 38714706-n
Quantité disponible : 19 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. New copy - Usually dispatched within 4 working days. 726. N° de réf. du vendeur B9781119696957
Quantité disponible : 19 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 38714706
Quantité disponible : 19 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 38714706
Quantité disponible : 19 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Neuware - Computational Fractional Dynamical SystemsA rigorous presentation of different expansion and semi-analytical methods for fractional differential equationsFractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering applications. Over the past several decades, the popularity of the fractional derivative has increased significantly in diverse areas such as electromagnetics, financial mathematics, image processing, and materials science. Obtaining analytical and numerical solutions of nonlinear partial differential equations of fractional order can be challenging and involve the development and use of different methods of solution.Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications presents a variety of computationally efficient semi-analytical and expansion methods to solve different types of fractional models. Rather than focusing on a single computational method, this comprehensive volume brings together more than 25 methods for solving an array of fractional-order models. The authors employ a rigorous and systematic approach for addressing various physical problems in science and engineering.\* Covers various aspects of efficient methods regarding fractional-order systems\* Presents different numerical methods with detailed steps to handle basic and advanced equations in science and engineering\* Provides a systematic approach for handling fractional-order models arising in science and engineering\* Incorporates a wide range of methods with corresponding results and validationComputational Fractional Dynamical Systems: Fractional Differential Equations and Applications is an invaluable resource for advanced undergraduate students, graduate students, postdoctoral researchers, university faculty, and other researchers and practitioners working with fractional and integer order differential equations. N° de réf. du vendeur 9781119696957
Quantité disponible : 2 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 401833676
Quantité disponible : 3 disponible(s)