This practical guide illustrates the use of state-of-the-art machine learning and data mining techniques in astronomy. The book presents issues in the astronomical sciences that are also important to health, social, and physical sciences. It describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In addition, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Michael J. Way, PhD, is a research scientist at the NASA Goddard Institute for Space Studies in New York and the NASA Ames Research Center in California. He is also an adjunct professor in the Department of Physics and Astronomy at Hunter College. His research focuses on understanding the multiscale structure of our universe, modeling the atmospheres of exoplanets, and applying kernel methods to new areas in astronomy.
Jeffrey D. Scargle, PhD, is an astrophysicist in the Space Science and Astrobiology Division of the NASA Ames Research Center. His main interests encompass the variability of astronomical objects, including the Sun, sources in the Galaxy, and active galactic nuclei; cosmology; plasma astrophysics; planetary detection; and data analysis and statistical methods.
Kamal M. Ali, PhD, is a research scientist in machine learning and data mining. He has a consulting practice and is cofounder of the start-up Metric Avenue. He has carried out research at IBM Almaden, Stanford University, Vividence, Yahoo, and TiVo, where he worked on the Tivo Collaborative Filtering Engine. His current research focuses on combining machine learning in conditional random fields with linguistically rich features to make machines better at reading web pages.
Ashok N. Srivastava, PhD, is the principal scientist for Data Mining and Systems Health Management and leader of the Intelligent Data Understanding group at NASA Ames Research Center. His research includes the development of data mining algorithms for anomaly detection in massive data streams, kernel methods in machine learning, and text mining algorithms.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 744. N° de réf. du vendeur 372053504
Quantité disponible : 3 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 27469950-n
Quantité disponible : 10 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 27469950
Quantité disponible : 10 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 27469950
Quantité disponible : 10 disponible(s)
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781138199309
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781138199309
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781138199309_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 27469950-n
Quantité disponible : 10 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 744. N° de réf. du vendeur 26375040479
Quantité disponible : 3 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 744. N° de réf. du vendeur 18375040469
Quantité disponible : 3 disponible(s)