This report describes work performed to provide details of the microstructure in high-quality hydrogenated amorphous silicon and related alloys for the nanometer size scale. The materials studied were prepared by current state-of-the-art deposition methods, as well as new and emerging deposition techniques. The purpose was to establish the role of microstructural features in controlling the opto-electronic and photovoltaic properties. The approach centered around the use of the uncommon technique of small-angle X-ray scattering (SAXS), which is highly sensitive to microvoids and columnar-like microstructure. Nanovoids of H-rich clusters with 1 to 4 nm sizes in a-Si: H at the 1 vol. percent level correlate with poor solar-cell and opto-electronic behavior. Larger-scale features due either to surface roughness or residual columnar-like structures were found in present state-of-the-art device material. Ge alloying above about 10 to 20 at. percent typically leads to significant increases in heterogeneity, and this has been shown to be due in part to non-uniform Ge distributions. Ge additions also cause columnar-like growth, but this can be reduced or eliminated by enhanced ion bombardment during growth. In contrast, C alloying typically induces a random nanostructure consisting of a narrow size distribution of 1-nm-sized objects with a high density, consistent with the notably poorer opto-electronic behavior of these alloys
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLING22Oct2517050310822
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 54. N° de réf. du vendeur 26386046774
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 54. N° de réf. du vendeur 393553129
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 54. N° de réf. du vendeur 18386046780
Quantité disponible : 4 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 143. N° de réf. du vendeur C9781249201526
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. This report describes work performed to provide details of the microstructure in high-quality hydrogenated amorphous silicon and related alloys for the nanometer size scale. The materials studied were prepared by current state-of-the-art deposition methods,. N° de réf. du vendeur 6468606
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Neuware - This report describes work performed to provide details of the microstructure in high-quality hydrogenated amorphous silicon and related alloys for the nanometer size scale. The materials studied were prepared by current state-of-the-art deposition methods, as well as new and emerging deposition techniques. The purpose was to establish the role of microstructural features in controlling the opto-electronic and photovoltaic properties. The approach centered around the use of the uncommon technique of small-angle X-ray scattering (SAXS), which is highly sensitive to microvoids and columnar-like microstructure. Nanovoids of H-rich clusters with 1 to 4 nm sizes in a-Si:H at the 1 vol. percent level correlate with poor solar-cell and opto-electronic behavior. Larger-scale features due either to surface roughness or residual columnar-like structures were found in present state-of-the-art device material. Ge alloying above about 10 to 20 at. percent typically leads to significant increases in heterogeneity, and this has been shown to be due in part to non-uniform Ge distributions. Ge additions also cause columnar-like growth, but this can be reduced or eliminated by enhanced ion bombardment during growth. In contrast, C alloying typically induces a random nanostructure consisting of a narrow size distribution of 1-nm-sized objects with a high density, consistent with the notably poorer opto-electronic behavior of these alloys. N° de réf. du vendeur 9781249201526
Quantité disponible : 2 disponible(s)