A quantum cascade (QC) laser is a specific type of semiconductor laser that operates through principles of quantum mechanics. In less than a decade QC lasers are already able to outperform previously designed double heterostructure semiconductor lasers. Because there is a genuine lack of compact and coherent devices which can operate in the far-infrared region the motivation exists for designing a terahertz QC laser. A device operating at this frequency is expected to be more efficient and cost effective than currently existing devices. It has potential applications in the fields of spectroscopy, astronomy, medicine and free-space communication as well as applications to near-space radar and chemical/biological detection. The overarching goal of this research was to find QC laser parameter combinations which can be used to fabricate viable structures. To ensure operation in the THz region the device must conform to the extremely small energy level spacing range from 1015 meV. The time and expense of the design and production process is prohibitive, so an alternative to fabrication was necessary. To accomplish this goal a model of a QC laser, developed at Worchester Polytechnic Institute with sponsorship from the Air Force Research Laboratory Sensors Directorate, and the General Multiobjective Parallel Genetic Algorithm (GenMOP), developed at the Air Force Institute of Technology, were integrated to form a computer simulation which stochastically searches for feasible solutions. GenMOP is a pareto-based algorithm that utilizes real values for crossover and mutation operators. Additionally, the algorithm employs fitness sharing through a niche radius. The individual chromosomes are encoded with real-values denoting the temperature, bias, current density, layer thickness and donor density of a particular laser. Auxiliary genes are associated with the individual chromosomes to define fitness values and pareto ranking. The GA investigates 17 distinct frequencie
ranging
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 29,39 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 1,07 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781249362616
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781249362616_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9781249362616
Quantité disponible : 10 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781249362616
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 271. N° de réf. du vendeur C9781249362616
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 128. N° de réf. du vendeur 26393272078
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 128. N° de réf. du vendeur 386360529
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 128. N° de réf. du vendeur 18393272068
Quantité disponible : 4 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Neuware - A quantum cascade (QC) laser is a specific type of semiconductor laser that operates through principles of quantum mechanics. In less than a decade QC lasers are already able to outperform previously designed double heterostructure semiconductor lasers. Because there is a genuine lack of compact and coherent devices which can operate in the far-infrared region the motivation exists for designing a terahertz QC laser. A device operating at this frequency is expected to be more efficient and cost effective than currently existing devices. It has potential applications in the fields of spectroscopy, astronomy, medicine and free-space communication as well as applications to near-space radar and chemical/biological detection. The overarching goal of this research was to find QC laser parameter combinations which can be used to fabricate viable structures. To ensure operation in the THz region the device must conform to the extremely small energy level spacing range from 1015 meV. The time and expense of the design and production process is prohibitive, so an alternative to fabrication was necessary. To accomplish this goal a model of a QC laser, developed at Worchester Polytechnic Institute with sponsorship from the Air Force Research Laboratory Sensors Directorate, and the General Multiobjective Parallel Genetic Algorithm (GenMOP), developed at the Air Force Institute of Technology, were integrated to form a computer simulation which stochastically searches for feasible solutions. GenMOP is a pareto-based algorithm that utilizes real values for crossover and mutation operators. Additionally, the algorithm employs fitness sharing through a niche radius. The individual chromosomes are encoded with real-values denoting the temperature, bias, current density, layer thickness and donor density of a particular laser. Auxiliary genes are associated with the individual chromosomes to define fitness values and pareto ranking. The GA investigates 17 distinct frequencie ranging. N° de réf. du vendeur 9781249362616
Quantité disponible : 2 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA773124936261X6
Quantité disponible : 1 disponible(s)