In this research, we consider stochastic and dynamic transportation network problems. Particularly, we develop a variety of algorithms to solve the expected shortest path problem in addition to techniques for computing the total travel time distribution along a path in the network. First, we develop an algorithm for solving an independent expected shortest path problem. Next, we incorporate the inherent dependencies along successive links in two distinct ways to find the expected shortest path. Since the dependent expected shortest path problem cannot be solved with traditional deterministic approaches, we develop a heuristic based on the K-shortest path algorithm for this dependent stochastic network problem. Additionally, transient and asymptotic versions of the problem are considered. An algorithm to compute a parametric total travel time distribution for the shortest path is presented along with stochastically shortest path measures. The work extends the current literature on such problems by considering interactions on adjacent links.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 28,91 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 4,61 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781249600633_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9781249600633
Quantité disponible : 10 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781249600633
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781249600633
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 189. N° de réf. du vendeur C9781249600633
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. KlappentextrnrnIn this research, we consider stochastic and dynamic transportation network problems. Particularly, we develop a variety of algorithms to solve the expected shortest path problem in addition to techniques for computing the total t. N° de réf. du vendeur 6488487
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 162. N° de réf. du vendeur 26393274028
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 162. N° de réf. du vendeur 18393274022
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 162. N° de réf. du vendeur 386358643
Quantité disponible : 4 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Neuware - In this research, we consider stochastic and dynamic transportation network problems. Particularly, we develop a variety of algorithms to solve the expected shortest path problem in addition to techniques for computing the total travel time distribution along a path in the network. First, we develop an algorithm for solving an independent expected shortest path problem. Next, we incorporate the inherent dependencies along successive links in two distinct ways to find the expected shortest path. Since the dependent expected shortest path problem cannot be solved with traditional deterministic approaches, we develop a heuristic based on the K-shortest path algorithm for this dependent stochastic network problem. Additionally, transient and asymptotic versions of the problem are considered. An algorithm to compute a parametric total travel time distribution for the shortest path is presented along with stochastically shortest path measures. The work extends the current literature on such problems by considering interactions on adjacent links. N° de réf. du vendeur 9781249600633
Quantité disponible : 2 disponible(s)