This research focuses on reducing computational time in parameter optimization by using multiple surrogates and subprocess CPU times without compromising the quality of the results. This is motivated by applications that have objective functions with expensive computational times at high delity solutions. Applying, matching, and tuning optimization techniques at an algorithm level can reduce the time spent on unpro table computations for parameter optimization. The objective is to recover known parameters of a -ow property reference image by comparing to a template image that comes from a computational -uid dynamics simulation, followed by a numerical image registration and comparison process. Mixed variable pattern search and mesh adaptive direct search methods were applied using surrogate functions in the search step to produce solutions within a tolerance level of experimental observations. The surrogate functions are based on previous function values and computational times of those values. The use of multiple surrogates at each search step provides parameter selections that lead to improved solutions of an objective function evaluation with less computational time. Previously computed values for the objective function and computation time were used to compute a time cut-o parameter that allows termination during an objective function evaluation if the computational time exceeded a threshold or a divergent template image was created. This approach was tested using DACE and radial basis function surrogates within the NOMADm MATLABr software. The numerical results are presented.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 29,66 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 11,26 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9781288311422
Quantité disponible : 10 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781288311422_new
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781288311422
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781288311422
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 325. N° de réf. du vendeur C9781288311422
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. KlappentextrnrnThis research focuses on reducing computational time in parameter optimization by using multiple surrogates and subprocess CPU times without compromising the quality of the results. This is motivated by applications that have obje. N° de réf. du vendeur 6554793
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 158. N° de réf. du vendeur 26390601413
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 158. N° de réf. du vendeur 390047002
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 158. N° de réf. du vendeur 18390601423
Quantité disponible : 4 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Neuware - This research focuses on reducing computational time in parameter optimization by using multiple surrogates and subprocess CPU times without compromising the quality of the results. This is motivated by applications that have objective functions with expensive computational times at high delity solutions. Applying, matching, and tuning optimization techniques at an algorithm level can reduce the time spent on unpro table computations for parameter optimization. The objective is to recover known parameters of a -ow property reference image by comparing to a template image that comes from a computational -uid dynamics simulation, followed by a numerical image registration and comparison process. Mixed variable pattern search and mesh adaptive direct search methods were applied using surrogate functions in the search step to produce solutions within a tolerance level of experimental observations. The surrogate functions are based on previous function values and computational times of those values. The use of multiple surrogates at each search step provides parameter selections that lead to improved solutions of an objective function evaluation with less computational time. Previously computed values for the objective function and computation time were used to compute a time cut-o parameter that allows termination during an objective function evaluation if the computational time exceeded a threshold or a divergent template image was created. This approach was tested using DACE and radial basis function surrogates within the NOMADm MATLABr software. The numerical results are presented. N° de réf. du vendeur 9781288311422
Quantité disponible : 2 disponible(s)