This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
John Stillwell is the author of many books on mathematics; among the best known are Mathematics and its History, Naive Lie Theory, and Elements of Mathematics. He is a member of the inaugural class of Fellows of the American Mathematical Society and winner of the Chauvenet Prize for mathematical exposition.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,44 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 4,63 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781316518953_new
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 490. N° de réf. du vendeur C9781316518953
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781316518953
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 250 pages. 9.00x6.00x0.56 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __1316518957
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book, meant for undergraduate mathematics students and teachers, introduces algebraic number theory through problems from ordinary number theory that can be solved with the help of algebraic numbers, using a suitable generalization of unique prime fact. N° de réf. du vendeur 539766801
Quantité disponible : Plus de 20 disponibles
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
Hardcover. Etat : Very Good. New. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. N° de réf. du vendeur 1316518957-8-1
Quantité disponible : 1 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course. This book, meant for undergraduate mathematics students and teachers, introduces algebraic number theory through problems from ordinary number theory that can be solved with the help of algebraic numbers, using a suitable generalization of unique prime factorization. The material is motivated by weaving historical information throughout. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781316518953
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. N° de réf. du vendeur 9781316518953
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 250 pages. 9.00x6.00x0.56 inches. In Stock. N° de réf. du vendeur x-1316518957
Quantité disponible : 2 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2411530051403
Quantité disponible : Plus de 20 disponibles