Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Ankur Moitra is the Rockwell International Associate Professor of Mathematics at Massachusetts Institute of Technology. He is a principal investigator in the Computer Science and Artificial Intelligence Lab (CSAIL), a core member of the Theory of Computation Group, Machine Learning@MIT, and the Center for Statistics. The aim of his work is to bridge the gap between theoretical computer science and machine learning by developing algorithms with provable guarantees and foundations for reasoning about their behavior. He is a recipient of a Packard Fellowship, a Sloan Fellowship, an National Science Foundation (NSF) CAREER Award, an NSF Computing and Innovation Fellowship and a Hertz Fellowship.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Algorithmic Aspects of Machine Learning. Book. N° de réf. du vendeur BBS-9781316636008
Quantité disponible : 5 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. This book bridges theoretical computer science and machine learning by exploring what the two sides can teach each other. It emphasizes the need for flexible, tractable models that better capture not what makes machine learning hard, but what makes it easy. Theoretical computer scientists will be introduced to important models in machine learning and to the main questions within the field. Machine learning researchers will be introduced to cutting-edge research in an accessible format, and gain familiarity with a modern, algorithmic toolkit, including the method of moments, tensor decompositions and convex programming relaxations. The treatment beyond worst-case analysis is to build a rigorous understanding about the approaches used in practice and to facilitate the discovery of exciting, new ways to solve important long-standing problems. Machine learning is reshaping our everyday life. This book explores the theoretical underpinnings in an accessible way, offering theoretical computer scientists an introduction to important models and problems and offering machine learning researchers a cutting-edge algorithmic toolkit. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781316636008
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 158. N° de réf. du vendeur 26382498956
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781316636008_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 158. N° de réf. du vendeur 381405011
Quantité disponible : 1 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 274. N° de réf. du vendeur C9781316636008
Quantité disponible : Plus de 20 disponibles
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 158. N° de réf. du vendeur 18382498950
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 151 pages. 9.00x6.00x0.50 inches. In Stock. N° de réf. du vendeur x-1316636003
Quantité disponible : 2 disponible(s)
Vendeur : Toscana Books, AUSTIN, TX, Etats-Unis
Paperback. Etat : new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. N° de réf. du vendeur Scanned1316636003
Quantité disponible : 1 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. This book bridges theoretical computer science and machine learning by exploring what the two sides can teach each other. It emphasizes the need for flexible, tractable models that better capture not what makes machine learning hard, but what makes it easy. Theoretical computer scientists will be introduced to important models in machine learning and to the main questions within the field. Machine learning researchers will be introduced to cutting-edge research in an accessible format, and gain familiarity with a modern, algorithmic toolkit, including the method of moments, tensor decompositions and convex programming relaxations. The treatment beyond worst-case analysis is to build a rigorous understanding about the approaches used in practice and to facilitate the discovery of exciting, new ways to solve important long-standing problems. Machine learning is reshaping our everyday life. This book explores the theoretical underpinnings in an accessible way, offering theoretical computer scientists an introduction to important models and problems and offering machine learning researchers a cutting-edge algorithmic toolkit. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781316636008
Quantité disponible : 1 disponible(s)