"Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning. Reinforcement learning differs from supervised learning in not needing labelled input/output pairs to be presented, and in not needing sub-optimal actions to be explicitly corrected. Instead the focus is on finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge)."--
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dr. Abdul Rahman holds PhDs in physics, math, information technology-cybersecurity and has expertise in cybersecurity, big data, blockchain, and analytics (AI, ML).
Dr. Christopher Redino holds a PhD in theoretical physics and has extensive data science experience in every part of the AI / ML lifecycle.
Mr. Dhruv Nandakumar has extensive data science expertise in deep learning.
Dr. Tyler Cody is an Assistant Research Professor at the Virginia Tech National Security Institute.
Dr. Sachin Shetty is a Professor in the Electrical and Computer Engineering Department at Old Dominion University and the Executive Director of the Center for Secure and Intelligent Critical Systems at the Virginia Modeling, Analysis and Simulation Center.
Mr. Dan Radke is an Information Security professional with extensive experience in both offensive and defensive cybersecurity.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 45761605-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. A comprehensive and up-to-date application of reinforcement learning concepts to offensive and defensive cybersecurity In Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing, a team of distinguished researchers delivers an incisive and practical discussion of reinforcement learning (RL) in cybersecurity that combines intelligence preparation for battle (IPB) concepts with multi-agent techniques. The authors explain how to conduct path analyses within networks, how to use sensor placement to increase the visibility of adversarial tactics and increase cyber defender efficacy, and how to improve your organizations cyber posture with RL and illuminate the most probable adversarial attack paths in your networks. Containing entirely original research, this book outlines findings and real-world scenarios that have been modeled and tested against custom generated networks, simulated networks, and data. Youll also find: A thorough introduction to modeling actions within post-exploitation cybersecurity events, including Markov Decision Processes employing warm-up phases and penalty scalingComprehensive explorations of penetration testing automation, including how RL is trained and tested over a standard attack graph constructPractical discussions of both red and blue team objectives in their efforts to exploit and defend networks, respectivelyComplete treatment of how reinforcement learning can be applied to real-world cybersecurity operational scenarios Perfect for practitioners working in cybersecurity, including cyber defenders and planners, network administrators, and information security professionals, Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing will also benefit computer science researchers. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781394206452
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781394206452_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 45761605
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 45761605-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 45761605
Quantité disponible : Plus de 20 disponibles
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. A comprehensive and up-to-date application of reinforcement learning concepts to offensive and defensive cybersecurity In Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing, a team of distinguished researchers delivers an incisive and practical discussion of reinforcement learning (RL) in cybersecurity that combines intelligence preparation for battle (IPB) concepts with multi-agent techniques. The authors explain how to conduct path analyses within networks, how to use sensor placement to increase the visibility of adversarial tactics and increase cyber defender efficacy, and how to improve your organizations cyber posture with RL and illuminate the most probable adversarial attack paths in your networks. Containing entirely original research, this book outlines findings and real-world scenarios that have been modeled and tested against custom generated networks, simulated networks, and data. Youll also find: A thorough introduction to modeling actions within post-exploitation cybersecurity events, including Markov Decision Processes employing warm-up phases and penalty scalingComprehensive explorations of penetration testing automation, including how RL is trained and tested over a standard attack graph constructPractical discussions of both red and blue team objectives in their efforts to exploit and defend networks, respectivelyComplete treatment of how reinforcement learning can be applied to real-world cybersecurity operational scenarios Perfect for practitioners working in cybersecurity, including cyber defenders and planners, network administrators, and information security professionals, Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing will also benefit computer science researchers. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781394206452
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 921033042
Quantité disponible : Plus de 20 disponibles
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Hardcover. Etat : new. Hardcover. A comprehensive and up-to-date application of reinforcement learning concepts to offensive and defensive cybersecurity In Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing, a team of distinguished researchers delivers an incisive and practical discussion of reinforcement learning (RL) in cybersecurity that combines intelligence preparation for battle (IPB) concepts with multi-agent techniques. The authors explain how to conduct path analyses within networks, how to use sensor placement to increase the visibility of adversarial tactics and increase cyber defender efficacy, and how to improve your organizations cyber posture with RL and illuminate the most probable adversarial attack paths in your networks. Containing entirely original research, this book outlines findings and real-world scenarios that have been modeled and tested against custom generated networks, simulated networks, and data. Youll also find: A thorough introduction to modeling actions within post-exploitation cybersecurity events, including Markov Decision Processes employing warm-up phases and penalty scalingComprehensive explorations of penetration testing automation, including how RL is trained and tested over a standard attack graph constructPractical discussions of both red and blue team objectives in their efforts to exploit and defend networks, respectivelyComplete treatment of how reinforcement learning can be applied to real-world cybersecurity operational scenarios Perfect for practitioners working in cybersecurity, including cyber defenders and planners, network administrators, and information security professionals, Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing will also benefit computer science researchers. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9781394206452
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Neuware - A comprehensive and up-to-date application of reinforcement learning concepts to offensive and defensive cybersecurity. N° de réf. du vendeur 9781394206452
Quantité disponible : 2 disponible(s)