An essential guide for tackling outliers and anomalies in machine learning and data science.
In recent years, machine learning (ML) has transformed virtually every area of research and technology, becoming one of the key tools for data scientists. Robust machine learning is a new approach to handling outliers in datasets, which is an often-overlooked aspect of data science. Ignoring outliers can lead to bad business decisions, wrong medical diagnoses, reaching the wrong conclusions or incorrectly assessing feature importance, just to name a few.
Fundamentals of Robust Machine Learning offers a thorough but accessible overview of this subject by focusing on the how to properly handle outliers and anomalies in datasets. There are two main approaches described in the book: using outlier-tolerant ML tools, or removing outliers before using standard tools. Balancing theoretical foundations with practical Python code, it provides all the necessary skills to enhance the accuracy, stability and reliability of ML models.
Fundamentals of Robust Machine Learning readers will also find:
Fundamentals of Robust Machine Learning is ideal for undergraduate or graduate students in data science, machine learning, and related fields, as well as for professionals in the field looking to enhance their understanding of building models in the presence of outliers.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Resve Saleh, (PhD, UC Berkeley) is a Professor Emeritus at the University of British Columbia. He worked for a decade as a professor at the University of Illinois and as a visiting professor at Stanford University. He was Founder and Chairman of Simplex Solutions, Inc., which went public in 2001. He is an IEEE Fellow and Fellow of the Canadian Academy of Engineering.
Sohaib Majzoub, (PhD, University of British Columbia) is an Associate Professor at the University of Sharjah, UAE. He also taught at the American University in Dubai, UAE and at King Saud University, KSA, and a visiting professor at Delft Technical University in The Netherlands. He is a Senior Member of the IEEE.
A. K. MD. Ehsanes Saleh, (PhD, University of Western Ontario) is a Professor Emeritus and Distinguished Professor in the School of Mathematics and Statistics, Carleton University, Ottawa, Canada. He also taught as Simon Fraser University, the University of Toronto, and Stanford University. He is a Fellow of IMS, ASA and an Honorary Member of SSC, Canada.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 47623870-n
Quantité disponible : 15 disponible(s)
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : New. N° de réf. du vendeur 9781394294374
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur FW-9781394294374
Quantité disponible : 15 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47623870
Quantité disponible : 15 disponible(s)
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. N° de réf. du vendeur QNH0SRIKXL
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 47623870-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. An essential guide for tackling outliers and anomalies in machine learning and data science. In recent years, machine learning (ML) has transformed virtually every area of research and technology, becoming one of the key tools for data scientists. Robust machine learning is a new approach to handling outliers in datasets, which is an often-overlooked aspect of data science. Ignoring outliers can lead to bad business decisions, wrong medical diagnoses, reaching the wrong conclusions or incorrectly assessing feature importance, just to name a few. Fundamentals of Robust Machine Learning offers a thorough but accessible overview of this subject by focusing on how to properly handle outliers and anomalies in datasets. There are two main approaches described in the book: using outlier-tolerant ML tools, or removing outliers before using conventional tools. Balancing theoretical foundations with practical Python code, it provides all the necessary skills to enhance the accuracy, stability and reliability of ML models. Fundamentals of Robust Machine Learning readers will also find: A blend of robust statistics and machine learning principlesDetailed discussion of a wide range of robust machine learning methodologies, from robust clustering, regression and classification, to neural networks and anomaly detectionPython code with immediate application to data science problems Fundamentals of Robust Machine Learning is ideal for undergraduate or graduate students in data science, machine learning, and related fields, as well as for professionals in the field looking to enhance their understanding of building models in the presence of outliers. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781394294374
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47623870
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781394294374_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Ubiquity Trade, Miami, FL, Etats-Unis
Etat : New. Brand new! Please provide a physical shipping address. N° de réf. du vendeur 9781394294374
Quantité disponible : Plus de 20 disponibles