New edition of a PROSE award finalist title on core concepts for machine learning, updated with the latest developments in the field, now with Python and R source code side-by-side
Machine Learning is a comprehensive text on the core concepts, approaches, and applications of machine learning. It presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. New content for this edition includes chapter expansions which provide further computational and algorithmic insights to improve reader understanding. This edition also revises several chapters to account for developments since the prior edition.
In this book, the design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods, enabling readers to solve applied problems more efficiently and effectively. This book also includes methods for optimization, risk estimation, model selection, and dealing with biased data samples and software limitations -- essential elements of most applied projects.
Written by an expert in the field, this important resource:
A volume in the popular Wiley Series in Probability and Statistics, Machine Learning offers the practical information needed for an understanding of the methods and application of machine learning for advanced undergraduate and beginner graduate students, data science and machine learning practitioners, and other technical professionals in adjacent fields.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Steven W. Knox holds a Ph.D. in Mathematics from the University of Illinois and an M.S. in Statistics from Carnegie Mellon University. He has almost thirty years' experience in using Machine Learning, Statistics, and Mathematics to solve real-world problems. He is currently a Data Science Subject Matter Expert at the National Security Agency, where he has also served as Technical Director of Mathematics Research and in other senior technical and leadership roles.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. New edition of a PROSE award finalist title on core concepts for machine learning, updated with the latest developments in the field, now with Python and R source code side-by-side Machine Learning is a comprehensive text on the core concepts, approaches, and applications of machine learning. It presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. New content for this edition includes chapter expansions which provide further computational and algorithmic insights to improve reader understanding. This edition also revises several chapters to account for developments since the prior edition. In this book, the design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods, enabling readers to solve applied problems more efficiently and effectively. This book also includes methods for optimization, risk estimation, model selection, and dealing with biased data samples and software limitations essential elements of most applied projects. Written by an expert in the field, this important resource: Illustrates many classification methods with a single, running example, highlighting similarities and differences between methodsPresents side-by-side Python and R source code which shows how to apply and interpret many of the techniques coveredIncludes many thoughtful exercises as an integral part of the text, with an appendix of selected solutionsContains useful information for effectively communicating with clients on both technical and ethical topicsDetails classification techniques including likelihood methods, prototype methods, neural networks, classification trees, and support vector machines A volume in the popular Wiley Series in Probability and Statistics, Machine Learning offers the practical information needed for an understanding of the methods and application of machine learning for advanced undergraduate and beginner graduate students, data science and machine learning practitioners, and other technical professionals in adjacent fields. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781394325252
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 409837845
Quantité disponible : 3 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2026. 2nd Edition. hardcover. . . . . . N° de réf. du vendeur V9781394325252
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26404365002
Quantité disponible : 3 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. New copy - Usually dispatched within 4 working days. N° de réf. du vendeur B9781394325252
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 2nd edition. In Stock. N° de réf. du vendeur __1394325258
Quantité disponible : 2 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. New edition of a PROSE award finalist title on core concepts for machine learning, updated with the latest developments in the field, now with Python and R source code side-by-side Machine Learning is a comprehensive text on the core concepts, approaches, and applications of machine learning. It presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. New content for this edition includes chapter expansions which provide further computational and algorithmic insights to improve reader understanding. This edition also revises several chapters to account for developments since the prior edition. In this book, the design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods, enabling readers to solve applied problems more efficiently and effectively. This book also includes methods for optimization, risk estimation, model selection, and dealing with biased data samples and software limitations essential elements of most applied projects. Written by an expert in the field, this important resource: Illustrates many classification methods with a single, running example, highlighting similarities and differences between methodsPresents side-by-side Python and R source code which shows how to apply and interpret many of the techniques coveredIncludes many thoughtful exercises as an integral part of the text, with an appendix of selected solutionsContains useful information for effectively communicating with clients on both technical and ethical topicsDetails classification techniques including likelihood methods, prototype methods, neural networks, classification trees, and support vector machines A volume in the popular Wiley Series in Probability and Statistics, Machine Learning offers the practical information needed for an understanding of the methods and application of machine learning for advanced undergraduate and beginner graduate students, data science and machine learning practitioners, and other technical professionals in adjacent fields. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781394325252
Quantité disponible : 1 disponible(s)
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
Etat : New. 2026. 2nd Edition. hardcover. . . . . . Books ship from the US and Ireland. N° de réf. du vendeur V9781394325252
Quantité disponible : Plus de 20 disponibles
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Hardcover. Etat : new. Hardcover. New edition of a PROSE award finalist title on core concepts for machine learning, updated with the latest developments in the field, now with Python and R source code side-by-side Machine Learning is a comprehensive text on the core concepts, approaches, and applications of machine learning. It presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. New content for this edition includes chapter expansions which provide further computational and algorithmic insights to improve reader understanding. This edition also revises several chapters to account for developments since the prior edition. In this book, the design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods, enabling readers to solve applied problems more efficiently and effectively. This book also includes methods for optimization, risk estimation, model selection, and dealing with biased data samples and software limitations essential elements of most applied projects. Written by an expert in the field, this important resource: Illustrates many classification methods with a single, running example, highlighting similarities and differences between methodsPresents side-by-side Python and R source code which shows how to apply and interpret many of the techniques coveredIncludes many thoughtful exercises as an integral part of the text, with an appendix of selected solutionsContains useful information for effectively communicating with clients on both technical and ethical topicsDetails classification techniques including likelihood methods, prototype methods, neural networks, classification trees, and support vector machines A volume in the popular Wiley Series in Probability and Statistics, Machine Learning offers the practical information needed for an understanding of the methods and application of machine learning for advanced undergraduate and beginner graduate students, data science and machine learning practitioners, and other technical professionals in adjacent fields. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9781394325252
Quantité disponible : 1 disponible(s)