The purpose of this monograph is to show how a compliant offshore structure in an ocean environment can be modeled in two and three di- mensions. The monograph is divided into five parts. Chapter 1 provides the engineering motivation for this work, that is, offshore structures. These are very complex structures used for a variety of applications. It is possible to use beam models to initially study their dynamics. Chapter 2 is a review of variational methods, and thus includes the topics: princi- ple of virtual work, D'Alembert's principle, Lagrange's equation, Hamil- ton's principle, and the extended Hamilton's principle. These methods are used to derive the equations of motion throughout this monograph. Chapter 3 is a review of existing transverse beam models. They are the Euler-Bernoulli, Rayleigh, shear and Timoshenko models. The equa- tions of motion are derived and solved analytically using the extended Hamilton's principle, as outlined in Chapter 2. For engineering purposes, the natural frequencies of the beam models are presented graphically as functions of normalized wave number and geometrical and physical pa- rameters. Beam models are useful as representations of complex struc- tures. In Chapter 4, a fluid force that is representative of those that act on offshore structures is formulated. The environmental load due to ocean current and random waves is obtained using Morison's equa- tion. The random waves are formulated using the Pierson-Moskowitz spectrum with the Airy linear wave theory.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 89,59 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. N° de réf. du vendeur 4091948
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781402005732_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Broad Street Books, Branchville, NJ, Etats-Unis
Hardcover. Etat : New. Brand New Hardcover Book, factory sealed in original shrink wrap. N° de réf. du vendeur f7925
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The purpose of this monograph is to show how a compliant offshore structure in an ocean environment can be modeled in two and three di mensions. The monograph is divided into five parts. Chapter 1 provides the engineering motivation for this work, that is, offshore structures. These are very complex structures used for a variety of applications. It is possible to use beam models to initially study their dynamics. Chapter 2 is a review of variational methods, and thus includes the topics: princi ple of virtual work, D'Alembert's principle, Lagrange's equation, Hamil ton's principle, and the extended Hamilton's principle. These methods are used to derive the equations of motion throughout this monograph. Chapter 3 is a review of existing transverse beam models. They are the Euler-Bernoulli, Rayleigh, shear and Timoshenko models. The equa tions of motion are derived and solved analytically using the extended Hamilton's principle, as outlined in Chapter 2. For engineering purposes, the natural frequencies of the beam models are presented graphically as functions of normalized wave number and geometrical and physical pa rameters. Beam models are useful as representations of complex struc tures. In Chapter 4, a fluid force that is representative of those that act on offshore structures is formulated. The environmental load due to ocean current and random waves is obtained using Morison's equa tion. The random waves are formulated using the Pierson-Moskowitz spectrum with the Airy linear wave theory. 292 pp. Englisch. N° de réf. du vendeur 9781402005732
Quantité disponible : 2 disponible(s)
Vendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9781402005732
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -The purpose of this monograph is to show how a compliant offshore structure in an ocean environment can be modeled in two and three di mensions. The monograph is divided into five parts. Chapter 1 provides the engineering motivation for this work, that is, offshore structures. These are very complex structures used for a variety of applications. It is possible to use beam models to initially study their dynamics. Chapter 2 is a review of variational methods, and thus includes the topics: princi ple of virtual work, D'Alembert's principle, Lagrange's equation, Hamil ton's principle, and the extended Hamilton's principle. These methods are used to derive the equations of motion throughout this monograph. Chapter 3 is a review of existing transverse beam models. They are the Euler-Bernoulli, Rayleigh, shear and Timoshenko models. The equa tions of motion are derived and solved analytically using the extended Hamilton's principle, as outlined in Chapter 2. For engineering purposes, the natural frequencies of the beam models are presented graphically as functions of normalized wave number and geometrical and physical pa rameters. Beam models are useful as representations of complex struc tures. In Chapter 4, a fluid force that is representative of those that act on offshore structures is formulated. The environmental load due to ocean current and random waves is obtained using Morison's equa tion. The random waves are formulated using the Pierson-Moskowitz spectrum with the Airy linear wave theory.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 292 pp. Englisch. N° de réf. du vendeur 9781402005732
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - The purpose of this monograph is to show how a compliant offshore structure in an ocean environment can be modeled in two and three di mensions. The monograph is divided into five parts. Chapter 1 provides the engineering motivation for this work, that is, offshore structures. These are very complex structures used for a variety of applications. It is possible to use beam models to initially study their dynamics. Chapter 2 is a review of variational methods, and thus includes the topics: princi ple of virtual work, D'Alembert's principle, Lagrange's equation, Hamil ton's principle, and the extended Hamilton's principle. These methods are used to derive the equations of motion throughout this monograph. Chapter 3 is a review of existing transverse beam models. They are the Euler-Bernoulli, Rayleigh, shear and Timoshenko models. The equa tions of motion are derived and solved analytically using the extended Hamilton's principle, as outlined in Chapter 2. For engineering purposes, the natural frequencies of the beam models are presented graphically as functions of normalized wave number and geometrical and physical pa rameters. Beam models are useful as representations of complex struc tures. In Chapter 4, a fluid force that is representative of those that act on offshore structures is formulated. The environmental load due to ocean current and random waves is obtained using Morison's equa tion. The random waves are formulated using the Pierson-Moskowitz spectrum with the Airy linear wave theory. N° de réf. du vendeur 9781402005732
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2411530141124
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 292. N° de réf. du vendeur 26320715
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 292 Illus. N° de réf. du vendeur 7559956
Quantité disponible : 4 disponible(s)