After a brief introduction reviewing the concepts of principal ideal domains and commutative fields, the book discusses residue classes (for example, the integers mog=dulo some number m); quadratic residues; algebraic integers (that is, objects that behave like integers in arbitrary algebraic structures), their discriminant; decomposition, norm, and classes of ideals; the ramification index; and the fundamental theorem of Abelian extensions. The theorems and definitions are carefully motivated, and the author frequently stops to explain how things fit together and what will come next. There are a great many exercises and many useful examples at a
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 28,80 expédition depuis Royaume-Uni vers Etats-Unis
Destinations, frais et délaisEUR 6,81 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9781441928702
Quantité disponible : 2 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2411530294506
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781441928702_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The exposition of the classical theory of algebraic numbers is clear and thorough, and there isa large number of exercises as well as worked out numerical examples.A careful study of this book will provide a solid background to the learning of more recent topics. 708 pp. Englisch. N° de réf. du vendeur 9781441928702
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning o. N° de réf. du vendeur 4173343
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1006. N° de réf. du vendeur C9781441928702
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 708 2nd Edition. N° de réf. du vendeur 263114396
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 708 9 Illus. N° de réf. du vendeur 5782083
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 708. N° de réf. du vendeur 183114390
Quantité disponible : 4 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Gauss created the theory of binary quadratic forms in 'Disquisitiones Arithmeticae' and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem. These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others. This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography. This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part One is devoted to residue classes and quadratic residues. In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. Part Three is devoted to Kummer's theory of cyclomatic fields, and includes Bernoulli numbers and the proof of Fermat's Last Theorem for regular prime exponents. Finally, in Part Four, the emphasis is on analytical methods and it includes Dinchlet's Theorem on primes in arithmetic progressions, the theorem of Chebotarev and class number formulas. A careful study of this book will provide a solid background to the learning of more recent topics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 708 pp. Englisch. N° de réf. du vendeur 9781441928702
Quantité disponible : 2 disponible(s)