Articles liés à Likelihood, Bayesian, and MCMC Methods in Quantitative...

Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics - Couverture souple

 
9781441929976: Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics

Synopsis

This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style and contain much more detail than necessary. Here, effort has been made to relate biological to statistical parameters throughout, and the book includes extensive examples that illustrate the developing argument. Where most students in biology and agriculture lack the formal background needed to learn these modern biometrical techniques, this text bridges the gap by providing essential background material.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer
  • Date d'édition2010
  • ISBN 10 1441929975
  • ISBN 13 9781441929976
  • ReliureBroché
  • Langueanglais
  • Nombre de pages764
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 314,31

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Likelihood, Bayesian, and MCMC Methods in Quantitative...

Image fournie par le vendeur

Daniel Sorensen|Daniel Gianola
Edité par Springer New York, 2010
ISBN 10 : 1441929975 ISBN 13 : 9781441929976
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Key background given, including a review of probability and distribution theoryEnables access to the theories for less technically proficient biology and agriculture studentsThe relationship between biological and statistical parameters is . N° de réf. du vendeur 4173461

Contacter le vendeur

Acheter neuf

EUR 314,31
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Sorensen, Daniel; Gianola, Daniel
Edité par Springer, 2010
ISBN 10 : 1441929975 ISBN 13 : 9781441929976
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781441929976_new

Contacter le vendeur

Acheter neuf

EUR 373,79
Autre devise
Frais de port : EUR 4,75
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Daniel Gianola
Edité par Springer New York Dez 2010, 2010
ISBN 10 : 1441929975 ISBN 13 : 9781441929976
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Over the last ten years the introduction of computer intensive statistical methods has opened new horizons concerning the probability models that can be fitted to genetic data, the scale of the problems that can be tackled and the nature of the questions that can be posed. In particular, the application of Bayesian and likelihood methods to statistical genetics has been facilitated enormously by these methods. Techniques generally referred to as Markov chain Monte Carlo (MCMC) have played a major role in this process, stimulating synergies among scientists in different fields, such as mathematicians, probabilists, statisticians, computer scientists and statistical geneticists. Specifically, the MCMC 'revolution' has made a deep impact in quantitative genetics. This can be seen, for example, in the vast number of papers dealing with complex hierarchical models and models for detection of genes affecting quantitative or meristic traits in plants, animals and humans that have been published recently. This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Most students in biology and agriculture lack the formal background needed to learn these modern biometrical techniques. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style, and have been written by and addressed to professional statisticians. For this reason, considerable more detail is offered than what may be warranted for a more mathematically apt audience. The book is divided into four parts. Part I gives a review of probability and distribution theory. Parts II and III present methods of inference and MCMC methods. Part IV discusses several models that can be applied in quantitative genetics, primarily from a bayesian perspective.An effort has been made to relate biological to statistical parameters throughout, and examples are used profusely to motivate the developments. 764 pp. Englisch. N° de réf. du vendeur 9781441929976

Contacter le vendeur

Acheter neuf

EUR 374,49
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Daniel Gianola
ISBN 10 : 1441929975 ISBN 13 : 9781441929976
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Over the last ten years the introduction of computer intensive statistical methods has opened new horizons concerning the probability models that can be fitted to genetic data, the scale of the problems that can be tackled and the nature of the questions that can be posed. In particular, the application of Bayesian and likelihood methods to statistical genetics has been facilitated enormously by these methods. Techniques generally referred to as Markov chain Monte Carlo (MCMC) have played a major role in this process, stimulating synergies among scientists in different fields, such as mathematicians, probabilists, statisticians, computer scientists and statistical geneticists. Specifically, the MCMC 'revolution' has made a deep impact in quantitative genetics. This can be seen, for example, in the vast number of papers dealing with complex hierarchical models and models for detection of genes affecting quantitative or meristic traits in plants, animals and humans that have been published recently. This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Most students in biology and agriculture lack the formal background needed to learn these modern biometrical techniques. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style, and have been written by and addressed to professional statisticians. For this reason, considerable more detail is offered than what may be warranted for a more mathematically apt audience. The book is divided into four parts. Part I gives a review of probability and distribution theory. Parts II and III present methods of inference and MCMC methods. Part IV discusses several models that can be applied in quantitative genetics, primarily from a bayesian perspective.An effort has been made to relate biological to statistical parameters throughout, and examples are used profusely to motivate the developments. N° de réf. du vendeur 9781441929976

Contacter le vendeur

Acheter neuf

EUR 388,16
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier