Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, isolated data items. This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM).
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This volume introduces machine learning techniques that are particularly effective for modeling multimedia data and common tasks of multimedia content analysis. It demonstrates the application of key machine learning techniques through case studies.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 28,90 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First book dedicated to the multimedia community to address unique problems and interesting applications of machine learning in this areaIncludes examples of unsupervised learning, generative models and discriminative modelsIncludes Maximum. N° de réf. du vendeur 4174704
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM). 296 pp. Englisch. N° de réf. du vendeur 9781441943538
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781441943538_new
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Challenges in complexity and variability of multimedia data have led to revolutions in machine learning techniques. Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, isolated data items. A number of pixels in a digital image collectively conveys certain visual content to viewers. A TV video program consists of both audio and image streams that unfold the underlying story. To recognize the visual content of a digital image, or to understand the underlying story of a video program, we may need to label sets of pixels or groups of image and audio frames jointly.Machine Learning for Multimedia Content Analysis introduces machine learning techniques that are particularly powerful and effective for modeling spatial, temporal structures of multimedia data and for accomplishing common tasks of multimedia content analysis. This book systematically covers these techniques in an intuitive fashion and demonstrates their applications through case studies. This volume uses a large number of figures to illustrate and visualize complex concepts, and provides insights into the characteristics of many algorithms through examinations of their loss functions and straightforward comparisons.Machine Learning for Multimedia Content Analysis is designed for an academic and professional audience. Researchers will find this book an invaluable tool for applying machine learning techniques to multimedia content analysis. This volume is also suitable for practitioners in industry.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 296 pp. Englisch. N° de réf. du vendeur 9781441943538
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Challenges in complexity and variability of multimedia data have led to revolutions in machine learning techniques. Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, isolated data items. A number of pixels in a digital image collectively conveys certain visual content to viewers. A TV video program consists of both audio and image streams that unfold the underlying story. To recognize the visual content of a digital image, or to understand the underlying story of a video program, we may need to label sets of pixels or groups of image and audio frames jointly.Machine Learning for Multimedia Content Analysis introduces machine learning techniques that are particularly powerful and effective for modeling spatial, temporal structures of multimedia data and for accomplishing common tasks of multimedia content analysis. This book systematically covers these techniques in an intuitive fashion and demonstrates their applications through case studies. Thisvolume uses a large number of figures to illustrate and visualize complex concepts, and provides insights into the characteristics of many algorithms through examinations of their loss functions and straightforward comparisons.Machine Learning for Multimedia Content Analysis is designed for an academic and professional audience. Researchers will find this book an invaluable tool for applying machine learning techniques to multimedia content analysis. This volume is also suitable for practitioners in industry. N° de réf. du vendeur 9781441943538
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 296. N° de réf. du vendeur 263073241
Quantité disponible : 4 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2411530295818
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 296 20 Illus. N° de réf. du vendeur 5856006
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 296. N° de réf. du vendeur 183073235
Quantité disponible : 4 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 293 pages. 9.13x6.06x0.71 inches. In Stock. N° de réf. du vendeur x-1441943536
Quantité disponible : 2 disponible(s)